本文介绍了在多学科设计优化 (MDO) 背景下开发的设计和分析 (D&A) 平台中代表二次空气系统 (SAS) 使用的工具的集成。由于燃气轮机技术需要非常高的精度,因此在许多专业领域都需要细致的工作,工程师们面临着非增值任务,例如数据管理、软件之间的信息传输不畅以及繁琐的数据预处理和后处理产生的。上述元素大大减少了分析时间和最终产品的质量。这样的平台汇集了用于燃气轮机设计的软件,以实现其自动化。这些工具以批处理模式运行,并且该平台链接到数据管理系统,以保证提高流程效率。 SAS 可以冷却涡轮叶片等部件。它还有助于隔离和管理施加在球轴承上的负载。如果没有这样的系统,燃气轮机就无法达到今天的功率。已为 SAS 工程师设计并测试了一个工具。通过对工作流程进行仔细分析,建立了适合自动化的任务列表并确定了优先级。预处理是
在火电厂和加工工业的资产健康管理中,旋转机械状态监测系统的应用和实施有着悠久的历史 [3]。该技术在风电行业得到了进一步扩展,因为风电公司地理分布广泛,通常位于偏远地区,应重新考虑运营和维护成本。在监控策略中需要考虑应用和设置集中监控系统来连续监控大量相同的机器。要远程监控风力涡轮机系统的状况,需要一个数据采集和进一步处理物理参数的系统。每当机器部件开始出现故障时,该部件的物理特性和动态行为就会发生变化。监控机器部件的特定参数使我们能够识别与该特定问题相关的故障模式。实施状态监测的主要优势和好处是监测部件的当前状况,主要目标是提高机器的整体性能和效率,减少故障频率并提高生产率。第二个主要目标是在部件完全磨损并导致计划外停机进行维护之前观察部件的磨损状况 [4]。通过使用状态监测技术或基于状态的维护;维护人员在需要时或在机器可以停机进行维护工作时立即执行相应的维护操作 [5]。
美国国家科学院成立于 1863 年,由林肯总统签署的国会法案成立,是一个私人非政府机构,旨在为国家提供科学技术相关问题的咨询。院士由同行选举产生,以表彰他们在研究方面的杰出贡献。院长为 Marcia McNutt 博士。美国国家工程院成立于 1964 年,根据美国国家科学院的章程成立,旨在将工程实践引入国家咨询。院士由同行选举产生,以表彰他们在工程方面的杰出贡献。院长为 John L. Anderson 博士。美国国家医学院(前身为医学研究所)成立于 1970 年,根据美国国家科学院的章程成立,旨在为国家提供医疗和健康问题咨询。院士由同行选举产生,以表彰他们在医学和健康方面的杰出贡献。院长为 Victor J. Dzau 博士。这三个学院作为国家科学、工程和医学院共同合作,为国家提供独立、客观的分析和建议,并开展其他活动以解决复杂问题并为公共政策决策提供信息。美国国家科学院还鼓励教育和研究,表彰对知识的杰出贡献,并提高公众对科学、工程和医学的了解。欲了解有关美国国家科学、工程和医学院的更多信息,请访问 www.nationalacademi
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不做任何明示或暗示的保证,也不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
1 Introduction 1.1 Objective The objective of this Payload Planning, Integration and Operations Primer is to give Payload Developers (PDs) and Principal Investigators (PIs) that are new to the payload integration world an overview of the process and to outline the roles and responsibilities of several organizations with whom the new PDs and PIs will interface during the payload planning, integration and operations process.This primer highlights the many products to which both PDs and PIs will either provide inputs to or develop for their own use, as well as identify services that are available from several NASA ISS Payloads Office organizations that PDs and PIs will use as part of the payload overall integration process.1.2 Layout This primer starts from the beginning of the payload process and proceeds step by step (albeit at a very high level) from a proposed payload to a “manifest payload” and from there to integration all the way to launch and payload return.在有效载荷领域的术语中,人们会说从预增量规划、实时(执行)到后增量。本文档的主要重点是 PD/PI 需要开发的产品、提供输入以及他们可以使用的服务,以成功完成从预增量规划到后增量报告的有效载荷活动。本文档中尽一切努力消除在复杂的有效载荷集成领域中使用的日常术语,以便使新手尽可能容易理解。在本文档中,有许多网络链接只有在从显示设备阅读本文档时才会显示出来。它们嵌入在本文档中,供那些希望获得有关感兴趣主题的更多详细信息的人使用。这些网络链接将读者带到用于总结该特定主题材料的参考文档。本文档中以蓝色显示的所有材料(单词、句子等)下方都嵌入了网络链接;只需将鼠标滚动到其上并按照说明重定向到该链接即可。本文档中还有一个非常重要的附录。附录 A 描述了一种简化的有效载荷集成过程,称为“精益集成过程”。此精益集成过程的目标是让 PD 能够使用标准有效载荷集成过程的精简版本更快地将其有效载荷飞到国际空间站。但是,要使用精益集成过程,必须满足某些条件。敦促所有 PD 和 PI 仔细阅读附录 A。
测试轴承模型................................................................................30 测试配置...............................................................................................31 冲击载荷测试结果(轴不旋转)................................................33 冲击载荷测试结果(轴以 50 krpm 的转速旋转)....................................41
振荡器在使用过程中可能会发生频率从几 Hz 到几 kHz 不等的随机振动。这些振动会增加宽带相位噪声。有多项标准规定了随机振动曲线的测试条件,这些条件随预期的工作环境或受测电子设备类型的不同而变化 [1]。我们根据 MIL-STD-883H [2] 方法 2026 进行了测试,因为该标准最适用于电子元件。该标准规定了振动曲线并允许各种强度级别(见图 3)。条件 B 的复合功率水平为 7.5 g rms,适用于高振动移动环境。图 1 的测试设置中的控制器使用数字信号处理根据振动曲线中定义的功率密度级别在指定的频率范围内合成随机振动。
全球环境与安全监测 (GMES) 的成立是为了满足欧洲决策者日益增长的需求,即获取准确及时的信息服务,以便更好地管理环境、了解和减轻气候变化的影响并确保公民安全。必须具备适当的欧洲地球观测能力,以确保充满活力和有效的 GMES 服务组合的开发运营和可持续性。Sentinel-3 是一项欧洲地球观测卫星任务,旨在支持 GMES 的海洋环境服务,为陆地、大气紧急情况、安全和冰冻圈服务做出贡献。Sentinel-3 任务需要一系列卫星,承诺持续、长期收集质量均匀的数据,以可操作的方式生成和交付,用于数值海洋预测、海洋状态分析、预报和服务提供。测量要求已确定如下: 在全球海洋上获取海面地形 (SSH)、有效波高 (Hs) 和表面风速,其精度和精确度超过 Envisat RA-2。 增强沿海地区、海冰区域和内陆河流、其支流和湖泊的表面地形测量。 为全球海洋和沿海水域确定的红外和热红外辐射(“海陆表面温度”)的精度和精确度与 ENVISAT AATSR 目前在海洋上实现的精度和精确度相当,即<0.3 K),空间分辨率为 1 公里。 每 1 到 3 天通过光学仪器完成全球覆盖。 海洋和沿海水域的可见辐射(“海洋颜色”),其精度和精确度与 ENVISAT MERIS 和 AATSR 数据相当,可在 2 至 3 天内完全覆盖地球,空间分辨率同时为 ≤0.3 公里,并与 SST 测量值共同记录。 陆地表面(包括海冰和冰盖)的可见光、近红外、短波红外和热红外辐射(“陆地颜色和温度”),可在 1 至 2 天内完全覆盖地球,其产品至少与 ENVISAT MERIS、AATSR 和 SPOT Vegetation 以及它们的组合产品相当。Sentinel-3 任务概念的基本 GMES 操作要求是: 使用高倾角极地轨道,实现近乎完整的全球覆盖。 利用现有卫星高度计系统优化海洋表面地形测量覆盖范围。 光学仪器需要具有下降节点赤道穿越时间的太阳同步轨道,以补充现有平台测量及其长期序列,以减轻下午海洋热分层、太阳反光、早晨雾霾和云层的影响。 优化海面温度和海洋颜色测量的测量时间。 近实时数据处理和及时向运营用户提供所有处理产品的稳健交付 在 20 年的计划期限内,连续传输至少与 Envisat 交付质量相同的数据。 2013 年发射第一颗卫星(配备一系列平台以满足观测要求以及稳健、连续的运行数据提供要求)。
陆军训练战略 1-3。陆军的目标是定期组建训练有素、准备就绪的部队,以可持续的作战节奏应对当前任务和未来突发事件(陆军训练和领导者发展指导 [TLDG],2010-11 财年)。为了实现这一目标,陆军 G-3/5/7 制定了全面的陆军训练战略 (ATS)。1-4。ATS 描述了使陆军训练计划适应持续冲突时代、为部队和领导者做好开展决定性行动的准备以及重建战略纵深所需的目的、方式和手段。ATS 可以组建有凝聚力、训练有素、准备就绪的部队,这些部队可以在冲突的任何阶段、任何环境和任何条件下占据主导地位。1-5。ATS 确定了 10 个目标。每个目标都有详细说明 ATS 的支持目标。实现每个目标可确保陆军组建训练有素、准备就绪的部队。目标是:
1.冰冻圈统称地球系统中含有冻结状态水的元素,包括固体降水、积雪、海冰、湖冰和河冰、冰川、冰盖、冰盖、永久冻土和季节性冻土。冰冻圈是全球性的,存在于所有纬度和大约 100 个国家。认识到对世界冰雪资源过去、现在和未来状况的权威信息的需求日益增长,WMO 大会于 2007 年决定与其他 WMO 计划和国际伙伴组织及计划合作,着手开发全球冰冻圈监测 (GCW)。2011 年,第十六届 WMO 大会决定实施 GCW。2011 年 11 月 21-24 日,全球冰冻圈监视网 (GCW) 首次实施会议在瑞士日内瓦 WMO 总部举行。2.WMO 大会于 2011 年批准的 GCW 实施战略 (IS) 为首次实施会议的讨论奠定了基础。IS 提供了 GCW 背景、用户需求概述、GCW 使命和目标,并提出了 GCW 实施流程,包括建议的初始任务。本次会议旨在吸引参与者并最大限度地发挥现有活动和合作伙伴及其他组织提出的新合作理念的益处,以确定 GCW 的具体方向、任务、服务、产品、贡献和初始管理结构,这将有助于制定 GCW 实施计划。可以通过为会议准备的 GCW 文档计划访问和下载文档和演示文稿(参见: