活神经网络通过生长和自组织过程出现,从单个细胞开始,最终形成大脑,一个有组织、有功能的计算设备。然而,人工神经网络依靠人类设计的手工编程架构来实现其卓越的性能。我们能否开发出无需人工干预就能生长和自组织的人工计算设备?在本文中,我们提出了一种受生物启发的开发算法,该算法可以从单个初始细胞“生长”出一个功能齐全的分层神经网络。该算法组织层间连接以构建视网膜主题池化层。我们的方法受到早期视觉系统所采用的机制的启发,在动物睁开眼睛前几天,该系统将视网膜连接到外侧膝状体 (LGN)。稳健自组织的关键因素是第一层中出现的自发时空活动波和第二层中“学习”第一层中底层活动模式的局部学习规则。该算法可适应各种输入层几何形状,对第一层中的故障单元具有鲁棒性,因此可用于成功增长和自组织不同池大小和形状的池架构。该算法提供了一种通过增长和自组织构建分层神经网络的原始程序。我们还证明了从单个单元增长的网络在 MNIST 上的表现与手工制作的网络一样好。从广义上讲,我们的工作表明,受生物启发的开发算法可以应用于在计算机中自主生长功能性“大脑”。
人工神经网络(ANN)是一个信息或信号处理系统,由大量简单的处理元素组成,这些元素与直接链接互连,并配合以执行并行分布式处理以解决所需的计算任务。神经网络以类似的方式处理信息。ann的灵感来自生物神经系统的方式,例如大脑的作品 - 神经网络以身作则。ANN采用与常规计算相比,解决问题的方法。传统的计算机系统使用算法方法,即遵循一组说明以解决问题。将解决问题的能力限制在我们已经理解并知道如何解决的问题上。但是,神经网络和常规算法计算不在竞争中,而是相互竞争。有些任务更适合于算法方法(例如算术操作)和更适合神经网络方法的任务。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
● 也称为“传递函数” - 计算加权和,并决定是否“激发”神经元。 ● 最常见的例子 - 阶跃函数。 ● 非线性激活函数有助于解决复杂问题
●RSN应与当地的儿童保育资源和推荐机构(CCR&R)合作,以确定如何在RSN中最好地使用学校准备税收抵免。业务可能对与RSN的潜在捐款相关的税收优势特别感兴趣。路易斯安那州目前提供一套公司和个人所得税信用额度,用于捐赠幼儿努力。路易斯安那州的准备就绪税收抵免是各种与托儿相关的费用或活动的五个可退还税收抵免。例如,企业可能会因向儿童保育资源和转诊机构捐款而获得税收抵免,这些捐赠与LDOE合同,向父母和育儿提供者提供信息和服务。为育儿中心建设或扩建提供资金,为中心购买设备,经营自己的中心或支持幼儿座位的企业也有资格获得可退还的税收抵免。有关路易斯安那州学校准备税收抵免的更多信息,请参见此链接。
○该框架应在各州之间可以预测和一致,索赔人清楚地意识到他们有权获得的报酬,并能够实时对这些权利进行合理的估计。●当前的NEM不是容量市场,而是一个仅能能源市场。引入发电机的义务向市场提供能力不符与NEM的基本前提不一致(即。发电机被补偿其输出,而不是其可用性)。此外,产能市场将激励发电机采购能力,而不提供提供自由产能的义务。●NEM的仅能量结构意味着发电机,尤其是容量相对较低的因素的发电机依靠波动率来收回其固定成本。重点是其短期边际成本的薪酬安排不会弥补发电机的固定成本。●重新考虑与补偿框架相关的角色和责任时,应选择最有效的方法,既及时又有效。
本文记录了生产网络在求职和匹配过程中起着至关重要的作用。我们使用与多米尼加共和国的公司宇宙相匹配的雇主与雇主数据的数据记录了有关工人流动性的事实:1)工人在买家和供应商之间移动几乎两倍,在标准劳动力市场特征中,工人在供应商之间的预测几乎增加了两倍,而在标准劳动力市场特征中,比供应商在2)越来越多的收益量增加了,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的收益企业,2)越来越多的繁殖力。当他们的企业从买家或供应商那里雇用时,4)供应链雇用后的公司到公司的贸易增加,以及5)购买者或供应商雇用的公司与企业增长更强劲有关。调查证据指出,供应链的人力资本,并更好地了解工作申请人是供应链中雇用的主要原因。这些结果揭示了一个新的渠道,通过哪些因素影响供应链的因素,例如国际外包或签约摩擦,影响劳动力市场。
并非所有神经网络架构都是一样的,有些架构在某些任务上的表现比其他架构好得多。但是,与神经网络架构相比,权重参数有多重要?在这项工作中,我们想知道,在没有学习任何权重参数的情况下,神经网络架构本身能在多大程度上为给定任务编码解决方案。我们提出了一种搜索方法,用于搜索无需任何明确权重训练就能执行任务的神经网络架构。为了评估这些网络,我们用从均匀随机分布中采样的单个共享权重参数填充连接,并测量预期性能。我们证明,我们的方法可以找到无需权重训练就能执行多项强化学习任务的最小神经网络架构。在监督学习领域,我们发现使用随机权重在 MNIST 上实现远高于偶然准确率的网络架构。本文的交互式版本位于 https://weightagnostic.github.io/