○该框架应在各州之间可以预测和一致,索赔人清楚地意识到他们有权获得的报酬,并能够实时对这些权利进行合理的估计。●当前的NEM不是容量市场,而是一个仅能能源市场。引入发电机的义务向市场提供能力不符与NEM的基本前提不一致(即。发电机被补偿其输出,而不是其可用性)。此外,产能市场将激励发电机采购能力,而不提供提供自由产能的义务。●NEM的仅能量结构意味着发电机,尤其是容量相对较低的因素的发电机依靠波动率来收回其固定成本。重点是其短期边际成本的薪酬安排不会弥补发电机的固定成本。●重新考虑与补偿框架相关的角色和责任时,应选择最有效的方法,既及时又有效。
HEET与MIT ESI和MIT Open Learning合作,在1月30日至31日在独立活动期(IAP)的1月30日至31日提供了为期两天的课程“地热能网络:改变我们的热能系统”。本课程的目标是为参与者提供地热网络如何将热系统转换为清洁可再生能源的概述。本课程将汇集不同的专家和利益相关者,以涵盖以下主题,因为它们与地热能网络(GENS)相关:构建气候变化和能源挑战;劳动力,健康和环境正义;政策创新;城市和社会规模的扩张;设计原则;钻探,建筑和调试;生产力的建模和对电网的影响;和案例研究。
1 印第安纳医学院儿科、解剖学、医学和分子遗传学系 Herman B Wells 儿科研究中心,美国印第安纳州印第安纳波利斯 46202 2 印第安纳大学基因组学和生物信息学中心,美国布卢明顿 3 劳伦斯伯克利国家实验室环境基因组学和系统生物学部,美国加利福尼亚州伯克利 94720 4 加利福尼亚大学比较生物化学项目,美国加利福尼亚州伯克利 94720。 5 美国能源部联合基因组研究所,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利 94720 6 伯尔尼大学生物医学研究系 (DBMR),瑞士伯尔尼 7 伯尔尼大学医院心脏病学系,瑞士伯尔尼
摘要 - 这项工作介绍了几何空间信息树(GSIT),这是一个新颖的框架,通过将超平面分配给实体并降低下属节点的维度来构建层次关系。框架中的成员通过内部产品计算进行验证,简化执行步骤,同时跨越不同深度的层次结构进行身份验证。GSIT利用超平面的几何特性有效地编码和管理分层信息。它适用于车辆网络公共密钥基础架构(PKI),增强隐私保护,化名证书管理和多级可追溯性。此方法为管理安全的通信系统中的复杂层次结构提供了可扩展且灵活的解决方案。
作为一种新的编程范式,基于神经网络的机器学习已将其应用扩展到许多现实世界中的问题。由于神经网络的黑盒性质,验证和解释其行为变得越来越重要,尤其是当它们部署在安全至关重要的应用中时。现有的验证工作主要集中于定性验证,该验证询问是否存在针对神经网络的输入(指定区域),以便违反财产(例如,局部鲁棒性)。但是,在许多实际应用中,几乎可以肯定存在这样的(对抗性)输入,这使得定性答案降低了有意义。在这项工作中,我们研究了一个更有趣,更具挑战性的问题,即对神经网络的定量验证,该验证询问财产经常得到满足或侵犯财产的频率。我们针对二进制神经网络(BNNS),一般神经网络的1位量化。BNN最近在深度学习中引起了越来越多的关注,因为它们可以大幅度地减少记忆存储和执行时间,而智力操作在求助方案中至关重要,例如,嵌入式设备用于物联网的嵌入式设备。朝着对BNNS的定量验证,我们提出了一种新型算法方法,用于将BNN作为二进制决策图(BDDS),这是一种在形式验证和知识表示中广泛研究的模型。通过利用BNN的内部结构,我们的编码将BNN中块的输入输出关系转化为基数约束,然后由BDD编码。基于新的BDD编码,我们为BNN开发了一个定量验证框架,可以在其中对BNN进行精确和全面的分析。为了提高BDD编码的可扩展性,我们还研究了各个级别的并行化策略。我们通过为BNN提供定量鲁棒性验证和解释性来证明我们的框架的应用。广泛的实验评估证实了我们方法的有效性和效率。
摘要 - 本文提出了一个全面的风险评估模型,以关注气候条件和植被管理对中断风险的影响。使用包含停电记录,流星指标和植被指标的数据集,本文开发了一个逻辑回归模型,该模型优于几个替代方案,有效地确定了高度不平衡的数据中的风险因素。关键特征影响中断包括风速,植被密度,量化为增强的植被指数(EVI)和雪型,潮湿的雪和秋天条件表现出最大的积极作用。分析还显示了复杂的相互作用,例如风速和EVI的综合作用,表明植被密度可以缓解大风对停电的影响。基于618个样本的测试数据集的仿真案例研究表明,该模型在误差公差±0的误差范围内达到了80%的匹配率。05,展示了提出模型的有效性和鲁棒性,同时强调了其潜力,以告知预防策略,以减轻高风险环境条件下电力分配网络中的中断风险。未来的工作将整合LiDar的植被高度数据,并探索替代模型方法以捕获潜在的非线性关系。
摘要 - 本文提出了一个全面的风险评估模型,以关注气候条件和植被管理对中断风险的影响。使用包含停电记录,流星指标和植被指标的数据集,本文开发了一个逻辑回归模型,该模型优于几个替代方案,有效地确定了高度不平衡的数据中的风险因素。关键特征影响中断包括风速,植被密度,量化为增强的植被指数(EVI)和雪型,潮湿的雪和秋天条件表现出最大的积极作用。分析还显示了复杂的相互作用,例如风速和EVI的综合作用,表明植被密度可以缓解大风对停电的影响。基于618个样本的测试数据集的仿真案例研究表明,该模型在误差公差±0的误差范围内达到了80%的匹配率。05,展示了提出模型的有效性和鲁棒性,同时强调了其潜力,以告知预防策略,以减轻高风险环境条件下电力分配网络中的中断风险。未来的工作将整合LiDar的植被高度数据,并探索替代模型方法以捕获潜在的非线性关系。
这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。