Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
这项研究为从气候监测到广泛的地区到环境项目和农业任务提供了更准确的细分机会。例如,该解决方案促进了对森林区域的有效分析,其特征和变化,即使在云云比例很高的北部地区,同时考虑了气候条件对图像的影响。
摘要 - 通过人工智能(AI)基于人工智能(AI)基于人工智能的沟通优化仍然是基础的基础。作为第六代(6G)通信网络追求全赛纳里奥的覆盖范围,在复杂的极端环境中的选择提出了未经证实的挑战。这些环境的动态性质,结合物理约束,使AI解决方案(例如深度强化学习(DRL))很难为培训过程获得有效的奖励反馈。但是,许多现有的基于DRL的网络优化研究通过理想化的环境设置忽略了这一挑战。受到生成AI(Genai)(尤其是扩散模型)的强大功能的启发,在捕获复杂的潜在分布时,我们引入了一种新颖的基于扩散推理的奖励成型方案(着装),以实现强大的网络优化。通过对观察到的环境状态进行调节和执行动作,着装利用扩散模型的多步降级过程作为深层推理的一种形式,逐渐完善了潜在表示,以产生有意义的辅助奖励信号,以捕获网络系统模式。此外,连衣裙设计用于与任何DRL框架的无缝集成,允许连衣裙辅助的DRL(装扮得出)即使在极端的网络环境下也可以实现稳定而有效的DRL培训。实验结果表明,穿着的DRL大约达到1。礼服代码可从https://github.com/nice-hku/dress获得。与基线方法相比,在稀疏奖励无线环境中的收敛速度比其原始版本快于其原始版本,并且在多个一般DRL基准环境中的性能得到了显着改进。
财务时间序列是高度非线性的,它们的运动是不可预测的。人工神经网络(ANN)在财务预测中有足够的应用。ANN模型的性能主要取决于其培训。尽管基于梯度下降的方法对于ANN训练很常见,但它们有几个局限性。烟花算法(FWA)是一种最近开发的元疗法,它受到夜间烟花爆炸现象的启发,它提出了诸如更快的融合,并行性和找到全球最佳优势之类的特征。本章打算开发一个由FWA和ANN(FWANN)组成的混合模型,用于预测收盘价系列,交换系列和原油价格时间序列。将FWANN的适当性与基于PSO的ANN,GA-基于ANN,基于DE的ANN和MLP模型等模型进行了比较。四个性能指标,MAPE,NMSE,ARV和R2被视为评估的晴雨表。进行性能分析以显示FWANN的适用性和优越性。
在过去的几年中,深入的学习有了立体声匹配的精度,但恢复急剧的界限和高分辨率产出有效仍然充满挑战。在本文中,我们提出了立体声混合物网络(SMD-NETS),这是一个简单而有效的学习框架,与宽阔的2D和3D体系结构兼容,可改善这两个问题。特别是,我们利用双峰混合物密度作为输出代表,并表明这允许几乎不连续的尖锐而精确的差异估计,同时明确地构建了观测中固有的不确定性。此外,我们将差异估计作为图像域中的一个连续问题,从而使我们的模型以任意空间精度查询差异。我们对新的高分辨率和高度逼真的立体声数据集进行了全面的实验,该数据集由8MPX分辨率以及现实世界立体声数据集组成。我们的实验表明,在物体边界附近的深度准确性以及对标准GPU上高分辨率差异图的预测。,我们通过提高各种立体主杆的性能来证明我们技术的灵活性。
I. i tratotuction for Graphs(DNNG)代表了一个新兴领域,该领域研究如何将深度学习方法推广到图形结构化数据。由于图是一种功能强大且灵活的工具,可代表模式及其关系形式的复杂信息,从分子到蛋白质到蛋白质相互作用网络,再到社交或运输网络,或者在知识图上,或者在非常不同的范围内建模系统,这些方法已被用于许多应用领域。Since the pioneering works on trees, namely Recursive Neural Networks [1], [2], and directed acyclic graphs [3], [4], up to methods extended to general graphs, both by recursive approaches (namely Graph Neural Networks (GNNs) [5], [6]), or Graph Convolutional Network approaches (namely NN4Gs [7], GCNs, etc.),已经提出了许多用于图的神经模型[8],[9]。此外,除了纯神经网络范式之外,已经引入了术语深图网络(DGN),还包括基于贝叶斯的和生成的图形网络[9]。特别是在2015年之后,已经引入了更广泛的模型,并且在其各种化身中,DNNG和DGNS已成为图形表示在学习任务中的显着能力(例如节点分类,图形分类,图形分类,图形,图形和链接预测)的强烈研究的话题。目睹了对该领域的兴趣,已经出现了许多调查,例如[8],[9]和调查文件[8]获得了2024 IEEE TNNLS杰出纸质奖。但是,这一研究和应用领域仍然具有很高的活力且不断增长[10]。的确,DNNG和相关领域的越来越多的作品表明,学术和工业社区对开发更先进的技术和算法的需求仍然相当大,请考虑包含可信赖的
细胞微环境是围绕细胞的化学物质,蛋白质和其他信号的汤,并且是人体所特有的。例如,骨髓微环境包含生长血细胞和重组骨骼的信号。转移的神经母细胞瘤细胞经常迁移到骨髓,那里的骨形态发生蛋白(BMP)途径信号高度活跃。研究人员表明,BMP信号传导使神经母细胞瘤细胞更容易受到视黄酸的影响。
摘要 - 传统的人工神经网络从生物网络中汲取灵感,使用神经元的节点层来传递信息进行处理。更现实的模型包括在神经网络中的尖峰,更贴近捕获电气特性。然而,很大一部分脑细胞是神经胶质细胞类型的,特别是星形胶质细胞被认为在执行计算中起作用。在这里,我们介绍了一个修改后的尖峰神经网络模型,并在神经网络中具有添加类似星形胶质细胞的单元,并评估它们对学习的影响。我们将网络作为液态机器实现,并任务网络执行混乱的时间序列预测任务。我们改变了网络中类似神经元和星形胶质细胞样单元的数量和比率,以检查后一种单元对学习的影响。我们表明,与神经和星形细胞网络相反,神经元和星形胶质细胞的结合对于推动学习至关重要。有趣的是,我们发现当类似星形胶质细胞样和神经元的单位之间的比率大约为2:1时,达到了最高的学习率,这反映了生物星形胶质细胞与神经元比率的一些估计值。我们的结果表明,在跨时间范围内代表信息的类似星形胶质细胞样单元可以改变神经网络的学习率,并且应将星形胶质细胞与神经元的比例适当地调整为给定的任务。
1 1,深圳Lanmage医疗技术公司,有限公司,深圳市,广东,中国广东,2 Neusoft Medical System Co.,2.中国申阳大学的生命与健康管理学院,第6次放射学系,广州医科大学第二附属医院,中国广州,7七国卫生科学与环境工程学院,宁岑技术大学,宁岑,宁津,中国,8工程学研究中心,医学成像研究中心,<1,深圳Lanmage医疗技术公司,有限公司,深圳市,广东,中国广东,2 Neusoft Medical System Co.,2.中国申阳大学的生命与健康管理学院,第6次放射学系,广州医科大学第二附属医院,中国广州,7七国卫生科学与环境工程学院,宁岑技术大学,宁岑,宁津,中国,8工程学研究中心,医学成像研究中心,<