征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
NITK SURATHKAL 自 1960 年成立以来,卡纳塔克邦国立技术学院 (NITK),Surathkal 已经成为一所提供优质技术教育和支持研发活动的顶尖机构。印度政府根据 2007 年 NIT 法案第 29 号授予 NITK 国家重要机构地位,并一直被评为印度十大技术机构之一。目前,NITK 提供 9 个学士学位、28 个硕士学位和博士学位课程。该学院位于芒格洛尔市以北 22 公里处,沿着 66 号坎亚库马里-孟买国家公路,占地 300 英亩,周围森林密布,东面是风景如画的西高止山脉,西面是阳光普照的阿拉伯海沙滩。NITK 致力于提高人力资源的能力和潜力,目标是将他们培养成各自领域的领导者。我们的愿景是追求卓越,在技术教育方面具有全球竞争力,并专注于知识的吸收、生成和传播。 为期一年的活动展示了 NITK 在其各个活动领域的辉煌贡献,并预测了未来几年的新举措。 NITK 中央研究中心
Ivan Alonso 1,Cristiano Alpigiani 2,Brett Altschul 3,HenriqueAraújo4,Gianluigi Arduini 5,Jan Arlt 6,Leonardo Bardurina 7,AntunardBalaž8,Satvika Bandarupally 9,10,Barry C. Barry C. Barry C. Barish C. Barish C. Barish 11,Michele Barone 13 E Battelier 17,Charles FA Baynham 4,Quentin Beaufils 18,Aleksandar Beli´c 8,JoelBergé19,Jose Bernabeu 20,21,Andrea Bertoldi 17,Robert Bingham 22,23迭戈·布拉斯 24 , 25 , 凯·邦斯 26† , 菲利普·布耶 17† , 卡拉·布赖滕贝格 27 , 克里斯蒂安·布兰德 28 , 克劳斯·布拉克斯迈尔 29 , 28 , 亚历山大·布列松 19 , 奥利弗·布赫穆勒 4 , 30† , 德米特里·布德克 31 , 32 , 路易斯·布加略 33 , 谢尔盖·伯丁 34 , 路易吉·卡恰普奥蒂 35† , 西蒙尼·卡莱加里 36 , 泽维尔·卡尔梅特 37 , 达维德·卡洛尼科 38 , 本杰明·卡努埃尔 17 , 劳伦蒂乌-伊万·卡拉梅特 39 , 奥利维尔·卡拉兹 40† , 多纳泰拉·卡塞塔里 41 , 普拉提克·查克拉博蒂 42 , 斯瓦潘·查托帕迪亚伊 43 , 44 , 32 , Upasna Chauhan 45 , Xuzong Chen 46 , Yu-Ao Chen 47 , 48 , 49 , Maria Luisa Chiofalo 50 , 51† , Jonathon Coleman 34 , Robin Corgier 18 , JP Cotter 4 , A. Michael Cruise 26† , Yanou Cui 52 , Gavin Davies 4 , Albert De Roeck 53 , 5† , Marcel Demarteau 54 , Andrei Derevianko 55 , Marco Di Clemente 56 , Goran S. Djordjevic 57 , Sandro Donadi 58 , Olivier Doré 59 , Peter Dornan 4 , Michael Doser 5† , Giannis Drougakis 60 , Jacob Dunningham 37 , Sajan Easo 22 , Joshua Eby 61 , Gedminas Elertas 34 , John Ellis 7 , 5† , David Evans 4 , Pandora Examilioti 60 , Pavel Fadeev 31 , Mattia Fanì 62 , Farida Fassi 63 , Marco Fattori 9 , Michael A. Fedderke 64 , Daniel Felea 39 , Chen-Hao Feng 17 , Jorge Ferreras 22 , Robert Flack 65 , Victor V. Flambaum 66 , René Forsberg 67† , Mark Fromhold 68 , Naceur Gaaloul 42† , Barry M. Garraway 37 , Maria Georgousi 60 , Andrew Geraci 69 , Kurt Gibble 70 , Valerie Gibson 71 , Patrick Gill 72 , Gian F. Giudice 5 ,乔恩·戈德温 26 、奥利弗·古尔德 68 、奥列格·格拉乔夫 73 、彼得·W·格雷厄姆 44 、达里奥·格拉索 51 、保罗·F·格里恩 23 、克里斯汀·格林 74 、穆斯塔法·京多安 75 、拉特内什·K·古普塔 76 、马丁·海内尔特 71 、埃基姆·T·汉纳梅利 77 、莱昂尼·霍金斯 34 、奥雷利安·希斯 18 、维多利亚·A·亨德森 75 、瓦尔德马尔·赫尔 78 、斯文·赫尔曼 77 、托马斯·赫德 30 、理查德·霍布森 4† 、文森特·霍克 77 、杰森·M·霍根 44 、博迪尔·霍尔斯特 79 、迈克尔·霍林斯基 26 、乌尔夫·以色列森 59 、彼得·耶格利茨 80 、菲利普·杰泽81 , Gediminas Juzeli¯unas 82 , Rainer Kaltenbaek 83 , Jernej F. Kamenik 83 , Alex Kehagias 84 , Teodora Kirova 85 , Marton Kiss-Toth 86 , Sebastian Koke 36† , Shimon Kolkowitz 87 , Georgy Kornakov 88 , Tim Kovachy 69 , Markus Krutzik 75 , Mukesh Kumar 89 , Pradeep Kumar 90 , Claus Lämmerzahl 77 , Greg Landsberg 91 , Christophe Le Poncin-Lafitte 18 , David R. Leibrandt 92 , Thomas Lévèque 93† , Marek Lewicki 94 , Rui Li 42 , Anna Lipniacka 79 , Christian Lisdat 36† 、米娅·刘 95 、JL 洛佩兹-冈萨雷斯 96 、西娜·洛里亚尼 97 、约尔马·卢科 68 、朱塞佩·加埃塔诺·卢西亚诺 98 、Nathan Lundblad 99,Steve Maddox 86,MA Mahmoud 100,Azadeh Maleknejad 5,John March-Russell 30,Didier Massonnet 93,Christopher McCabe 7,Matthias Meister 28,Tadejemister 80,Mical 80 1,Gavin W. Morley 104,JurgenMüller42,Eamonn Murphy 35†,ÖzgürE。Musteğlu,Daniel O'She She。165 L oi 23,Judith Olson 107,Debapriya Pal 108,Dimitris G. Papazoglou 109,Elizabeth pasebet pasembou 4 Ki 111,Emanuele Pelucchi 112,Franck Pereira 18和Santos,Peter Achivski 17 13,114,
3月18日至19日,一群专家在Eelisa AI伦理和法律讲习班举行的布达佩斯。在四个小组讨论中,他们将研究该主题中可能的研究方向,以及监管的含义,尤其是对版权事项和欧盟AI法案的含义。该事件还将采用未来的预测方法和纪录片筛选。
特邀演讲嘉宾/小组成员:Debbie G. Senesky(斯坦福大学)、David Gottfried(佐治亚理工学院)、Mihail Roco(NSf)、Mary Tang(斯坦福大学)、Branden Brough(NNCO)、James Moore(NSF EHR 理事会)、Melissa Cowan(英特尔)、Jeffrey Miller(Kavli 基金会)、Victor Zhirnov(半导体研究公司)、Cherie Kagan(宾夕法尼亚大学)、Nadia Carlsten(SandboxAQ)、Jared Ashcroft(微纳米技术教育中心)、Rae Ostman(国家非正式 STEM 教育网络)、Tavarez Holston(佐治亚皮埃蒙特技术学院)、Holly Leddy(杜克大学)、Landon Loeber(美光科技)、Lora Weiss(芯片研发计划办公室)、Barry Johnson(NSF-TIP)、Richard Schneider(谷歌)、Ira Bennett(亚利桑那州立大学)、Vijay Narasimhan(EMD 电子), Raymond Samuel(北卡罗来纳州立农业技术大学)、Philip Hockberger(Waymaker Group)、Christopher Gourlay(澳大利亚国家制造工厂)、Michael Spencer(摩根州立大学)。
Mahalingam工程技术学院(MCET)由M.Manickam博士于1998年成立,目的是纪念他所钟爱的父亲Arutchelvar Dr.N.Mahalingam的第75个出生年份,其使命是使基于高质量的工程和技术在年轻人的能力和能力上倾向于面对围绕挑战的行业的技能和能力,以使基于高质量的工程和能力为年轻人的能力提供挑战。MCET是一所自大的,教育工程学院,并由新德里AICTE批准,并隶属于Anna University。该研究所已被NAAC认可,在Cycle III(2023-2030)中为A ++等级,最高等级。MCET目前提供12个UG节目,6个PG计划和8个具有所有合格UG计划的博士学位课程,并获得了NBA Tier-1的认可。
Mahalingam工程技术学院(MCET)由M.Manickam博士于1998年成立,目的是纪念他所钟爱的父亲Arutchelvar Dr.N.Mahalingam的第75个出生年份,其使命是使基于高质量的工程和技术在年轻人的能力和能力上倾向于面对围绕挑战的行业的技能和能力,以使基于高质量的工程和能力为年轻人的能力提供挑战。MCET是一所自大的,教育工程学院,并由新德里AICTE批准,并隶属于Anna University。该研究所已被NAAC认可,在Cycle III(2023-2030)中为A ++等级,最高等级。MCET目前提供12个UG节目,6个PG计划和8个具有所有合格UG计划的博士学位课程,并获得了NBA Tier-1的认可。
抽象目标本研究的目的是收集各种利益相关者的见解,确定现有的挑战并探索相关解决方案,以开发一个概念框架,该概念框架有助于开发慢性下背痛(CLBP)自我管理应用程序。设计代码工作坊方法。进行研究是在线进行的,允许一群利益相关者的参与。参与者是通过社交媒体平台和专业网络招募的,其中包括LBP至少3个月的个人,在CLBP管理中经验丰富的医疗保健专业人员以及具有数字健康应用程序背景的应用程序开发人员。干预措施使用了专注于集思广益,沟通和反思练习的代码签名研讨会,旨在促进合作和收集利益相关者的见解。结果衡量了针对CLBP的移动健康(MHealth)应用程序的关键挑战和潜在解决方案。结果九个利益相关者在当前的背痛应用程序中确定了四个主要挑战:信念和信任,动机,安全性和可用性。该小组还针对这些挑战进行了协作并提出了实用解决方案。结论本研究说明了CodeSign研讨会方法在为开发CLBP开发MHealth解决方案的关键见解方面的实用性。从这些研讨会中收集的见解可用于为未来的应用程序开发提供信息,从而有可能改善用户参与度。