人类引起的气候变化的现实是明确的,并且会造成不断增长的全球影响。访问有关当前气候变化和投影趋势的最新科学信息对于规划适应措施以及为减少温室气体排放(GHG)的努力而言至关重要。识别危害和风险可能用于评估脆弱性,确定适应的限制并增强对气候变化的韧性。本文强调了最近的研究计划如何继续阐明当前的流程并推进主要气候系统之间的预测,并确定剩余的知识差距。关键发现包括季风降雨的预计增长,这是由于气溶胶的减少降雨效应与降雨增加的温室气体之间的平衡变化所致;加强北大西洋风暴轨道;在两个两极的降雨中,降水的比例增加;厄尔尼诺南部振荡(ENSO)事件的频率和严重程度的增加以及
多发性骨髓瘤是全球第二常见的血液系统恶性肿瘤,发病率高和死亡率。尽管它被认为是一种无法治愈的疾病,但对这种肿瘤的了解增强导致了新的治疗方法,从而改善了患者的预期寿命。在临床试验,前瞻性注册和现实世界中的不同研究中,已经通过不同的研究生成了大量数据,这些研究已纳入了实验室测试,流量细胞术,分子标记,细胞遗传学,诊断图像和治疗,并将其用于常规临床实践。在这篇综述中,我们描述了如何使用不同的人工智能模型来处理和分析这些数据,旨在提高准确性并转化为临床上的好处,允许对早期诊断和响应评估进行实质性改进,加快分析加快分析,速度加快分析,减少对操作员偏见的劳动力密集型过程,并提供更高的参数信息,并提供更多的参数信息。此外,我们确定了人工智能如何允许开发综合模型,以预测对治疗的反应以及实现无法检测到的不可检测的可衡量可测量的残留疾病,无进展生存期和整体存活的可能性,从而导致更好的临床决策,从而有可能提高患者的个性化治疗,可以改善患者的能态。总体而言,人工智能有可能彻底改变多个骨髓瘤护理,这对于在前瞻性临床队列中进行验证是必要的,并开发模型以纳入常规的日常临床实践。
摘要目的:在现实世界中描述一种方法,以通过公共牙科服务与斯德哥尔摩地区的公共牙科服务与初级卫生保健之间的跨专业协作来识别患有未诊断前观和2型糖尿病的人。设计:描述性观察性研究。设置:该研究是在瑞典斯德哥尔摩地区的七个地点进行的。每个合作网站都由一家初级健康诊所和牙科诊所组成。主题:研究参与者包括18岁以上的成年人,他们访问了公共牙科服务,并且没有糖尿病前期或2型糖尿病的病史。主要结果指标:根据公共牙科服务的风险评估协议进行选择性筛查。在调查的方法(牙科和糖尿病)中,被诊断为龋齿和/或牙周炎的成年人被转介给初级卫生保健诊所,用于筛查糖尿病前期和2型糖尿病。结果:Dentdi在2017年至2020年之间在七个地点引入,所有这些都继续使用该方法。共有863名来自公共牙科服务的参与者转交给了初级卫生保健。中有396人接受了在初级卫生保健中心进行筛查的邀请。24个人不符合纳入标准,导致研究中总共包括372人。在372名参与者中,27%(101)的葡萄糖水平升高,其中12个被诊断为2型糖尿病,根据研究分类为89个糖尿病。结论:Dentdi是一种可行的跨专业协作方法,每个专业都会在日常临床实践中所包含的能力,以早日鉴定患有糖尿病前观察和2型糖尿病的人,并具有完整的护理链。目标是在斯德哥尔摩县甚至瑞典的其他地区传播这种方法。
电子邮件:solaja.oludele@oouagoiwoye.edu.ng摘要 - 塑料废物污染在全球范围内构成了重大的环境挑战,尤其是在尼日利亚等发展中国家,其中有限的废物管理基础设施加剧了问题。本文研究了人工智能(AI)技术解决发展中国家塑料废物的潜力,重点是尼日利亚的情况。通过对挑战,机遇,案例研究,政策含义和建议的全面分析,本文强调了AI在废物管理中的变革性作用。挑战诸如基础设施差距,数据稀缺和道德考虑之类的挑战,以及创新,效率和可持续性的机会。发达国家和发展中国家的案例研究说明了在收集,分类,回收和污染监测中成功的AI应用程序。政策的影响强调了全面立法,基础设施和技术投资,公众意识和跨部门合作的重要性。建议包括扩展的生产者责任政策,垃圾填埋场,教育运动和国际合作。发展中国家AI驱动的塑料废物减少的未来取决于技术进步,协作伙伴关系,投资增加,支持性政策和监管框架。通过利用AI技术和集体行动的力量,发展中国家可以解决塑料废物危机,促进环境可持续性,并为所有人提供更清洁,更绿色的未来。关键字 - 减少塑料废物,AI技术,发展中国家,废物管理,环境可持续性doi:http://dx.doi.org/10.14710/wastech.12.1.28-38 [如何引用本文:Solaja,O。M.(2024)。释放了人工智能的力量:革命性的塑料废物管理为发展中国家的可持续发展。废物技术,12(1),28-38 doi:http://dx.doi.org/10.14710/wastech.12.1.28-38]简介
联系人:Sivasankari TP夫人指定:代表性手机:9363521611电子邮件:sankari@ar4-tech.com地址:491/1B,Srinvasa Avenue附近,Senthampalayam,Mastiyam,Mastiyam,Mastiyam,Mastiyam,Mastiyam,Annur,Sarkarsamakulam,Sarkarsamakulam,Sarkarsamakulam,coimbatore,coimbatore,tim/dive>印度641107110711071107.
方法:从Shanxi Cancer Hospital收集的晚期非小细胞肺癌的462例患者被随机分配(以7:3的比例)与训练队列和内部验证队列分配。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。 使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。 单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。
• The Realities of the Energy Transition • The Role for Hydrogen in the Energy Transition • The Role of Renewables and Other Energy Sources • The Future Markets for Petrochemicals and Refineries of the Future • Circular Economy - Consumerism & Industry Responses • Emission Reduction - Carbon Dioxide Utilisation (CCUS) • Driving Innovation in a Net Zero World: Key Challenges in R&D • Digital Transformation on the Route to Net Zero • Dialogue on the Energy Future • Dialogue on Energy Security • Alleviating Energy Poverty – Industry Responses for Providing Access to Energy • Access to Capital and Innovative Business Models • Raising Finance during the Energy Transformation – an Investor-Industry Dialogue • Climate Solutions from the Oil and Gas Industry • Untapped Reserves – Driving Diversity in Oil and Gas • Diversity and Inclusion – Focus on Indigenous People • WPC Youth Session - Securing the Next Generation for our Industry • Social责任 - 赢得经营许可
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
5 md.devendran@gmail.com 摘要:压力已成为当今快节奏世界的一个重要问题,影响着人们的身心健康。这个项目名为“使用机器学习算法根据睡眠习惯检测人体压力”,旨在通过利用数据驱动的洞察力来识别压力水平来解决这一问题。所提出的系统分析睡眠模式,包括睡眠时间、中断和质量,以有效地对压力水平进行分类。通过利用决策树、随机森林、逻辑回归和支持向量机等先进的机器学习算法,该模型处理来自可穿戴设备或睡眠监测应用程序的数据以提取相关特征。分析睡眠潜伏期、效率和干扰等关键参数以及年龄、生活方式和身体活动等其他影响因素。该项目采用强大的数据集进行训练和测试,确保预测压力水平的高准确性和可靠性。该系统不仅可以识别压力水平,还可以提供可行的见解和建议,以改善睡眠质量和整体幸福感。采用准确度、精确度、召回率和 F1 分数等评估指标来衡量模型的性能。该项目的成果展示了机器学习在增强医疗保健应用方面的潜力。它提供了一种可扩展且高效的压力检测工具,促进了压力相关疾病的早期干预和更好的管理。