伤口愈合是一个复杂的障碍,尤其是对于慢性伤口。间充质干细胞衍生的外泌体可能是治疗皮肤伤口愈合的有希望的无细胞的方法。外泌体可以通过衰减炎症,促进血管生成,细胞增殖,细胞外基质产生和重塑来加速伤口愈合。然而,在申请临床治疗之前,需要解决许多问题,例如伤口部位的脱靶效应和外泌体的高降解。因此,已经引入了生物工程技术,以修改具有更大稳定性和特定治疗特性的外泌体。为了延长伤口床中外泌体的局部浓度,使用生物材料来加载外泌体作为一种有希望的策略。在这篇综述中,我们总结了外泌体的生物发生和特征,外泌体在伤口愈合中的作用以及修饰效果体在伤口愈合中的治疗应用。还讨论了外泌体在伤口愈合中的挑战和前景。
随着衰老的慢性变性疾病的发生率的抽象增长使伤口护理成为社会经济负担,并且不断地需要一种新颖,经济和高效的伤口愈合治疗。血小板通过调节伤口愈合的不同机械阶段,例如促进和稳定凝块,在止血和血栓形成中具有至关重要的作用。富含血小板的血浆(PRP)含有高浓度的血小板,比幼稚的血浆具有自体源,没有免疫原性不良反应。因此,PRP引起了人们的关注,作为增强康复过程的治疗方法。自过去几十年以来,已经进行了大量的研究和临床试验,以利用PRP在伤口愈合/Tis-Sue再生中的广泛作用。尽管这些严格的研究及其在多元化的医疗领域中的应用,但由于大型样品,对照临床试验和标准方案的稀少,基于PRP的疗法的效率仍在不断提及。本综述系统地描绘了伤口愈合的过程和血小板参与Tis-Sue修复机制。此外,重点是PRP,其准备方法,处理,
这篇论文由 VCU Scholars Compass 研究生院免费提供给您,供您开放访问。它已被 VCU Scholars Compass 的授权管理员接受并纳入论文和学位论文。有关更多信息,请联系 libcompass@vcu.edu 。
患者和方法。从 2000 年 1 月至 2018 年 12 月,我们中心已连续进行了 731 例肾移植。我们分析了伤口并发症和淋巴囊肿的发生率及其危险因素。结果。在 731 例肾移植中,我们观察到 115 名患者(15.7%)出现伤口并发症,158 名患者(21.7%)出现淋巴囊肿。其中,70 名患者同时出现两种并发症(9.5%),但 6 名患者因正在接受哺乳动物雷帕霉素靶向抑制剂治疗而被排除。29 名患者(45.3%)出现一级伤口并发症,35 名患者(54.7%)出现二级伤口并发症。淋巴囊肿是仅有的 3 例(4.6%)病例的唯一存在因素。其余患者有糖尿病 28 例(43.7%),超重/肥胖 38 例(59.3%),移植物功能延迟 17 例(26.5%),年龄≥ 60 岁 38 例(57.8%)。64 例接受他克莫司治疗的患者中有 30 例(46.8%)和接受环孢素治疗的患者中有 34 例(53.1%)存在上述关系;40 例患者未接受肌层重建(62.5%)。
摘要背景:本研究的目的是研究基于纳米纤维的铜的潜力,以加速伤口愈合过程并防止烧伤伤口感染。方法:用1 cm 2加热的铜板在左侧燃烧六到八周的雌性BALB/c小鼠,然后分为四个治疗组,分别用C8(基于纳米插入的Cunps),冷奶油(补充材料)作为对照药物,银硫二氮卓和无处理。皮肤组织样品在第0、3、8、15和24天从小鼠中取。一块固定在10%的中性缓冲福尔马林进行病理检查中,而其他片则存储在-80C中,直到用于促炎和生长因子基因表达。结果:用10 mg/ml C8处理的组的愈合过程明显更快,并且该组中小鼠的存活率显着高于其他组。促炎基因在C8处理的小鼠中表达并下调。组织病理学证实了与其他对照组相比,用10 mg/ml C8处理的组的治愈率更高。结论:C8对烧伤伤口的愈合具有有益的影响,应进一步研究该化合物的有效剂量。本研究表明,基于纳米氯酸盐的铜颗粒在小鼠皮肤上的抗炎特性。这项研究开辟了皮肤病学和燃烧疗法的新可能性,并突出了基于铜制的烧伤损伤的潜力。Avicenna J Med Biotech 2025; 17(1):2-13。简介关键字:抗炎剂,燃烧,铜,皮肤病学,伤口愈合以引用本文:Rezvan H,Zolhavarieh SM,Nourian A,Bayat E,Bayat E,Kalanaky S,Fakharzadeh S等。基于纳米化的铜纳米颗粒对小鼠模型中燃烧伤口愈合的治疗作用。
伤口愈合在生物医学科学中提出了重大挑战,需要精确的治疗性分娩和实时监测。生物电子系统提供了一种有希望的解决方案,但在很大程度上尚未探索伤口护理,尤其是在反映人类康复动力学的大型动物模型中。这项研究引入了配备有离子电泵的遥控无线生物电子平台,可提供氟西汀,氟西汀是一种选择性的5-羟色胺再摄取抑制剂,可促进伤口修复。体外和外病毒测试对氟西汀的递送有效验证。在猪伤口模型中的体内实验在3天和7天的时间内表现出明显的治疗功效。 该系统增强了愈合结果,将重新上皮化增加了37%(H&E染色),将M1/M2巨噬细胞比率降低了33%,并刺激伤口部位的神经元生长。 这个生物电平台以受控的,远程控制的方式提供氟西汀,同时允许伤口直接伤口成像,可用于监测伤口愈合的进度。 此外,它允许精确的剂量和时间递送治疗,以增强未来大型动物伤口愈合研究的结果。在3天和7天的时间内表现出明显的治疗功效。该系统增强了愈合结果,将重新上皮化增加了37%(H&E染色),将M1/M2巨噬细胞比率降低了33%,并刺激伤口部位的神经元生长。这个生物电平台以受控的,远程控制的方式提供氟西汀,同时允许伤口直接伤口成像,可用于监测伤口愈合的进度。此外,它允许精确的剂量和时间递送治疗,以增强未来大型动物伤口愈合研究的结果。
营养不良和特定的微量营养素缺陷是可能进一步损害糖尿病患者伤口愈合的因素。7伤口愈合是一个复杂的过程,需要足够的能量平衡,碳水化合物,蛋白质,脂肪,维生素和矿物质。8口腔营养补充剂(ONS)含有蛋白质,omega-3脂肪酸,维生素和矿物质是一种方便的格式,可帮助患者满足其营养需求。与标准配方相比,与标准配方相比,有系统的综述和荟萃分析得出的结论是,高热量,高蛋白ONS或带有精氨酸,锌和抗氧化剂的富含精氨酸,锌和抗氧化剂的饲料与改善压力溃疡(PU)的愈合有关。9鉴于DFU和PU的发病机理的相似性,10预计PU患者中看到的许多好处也适用于DFU患者。
从患者自己的外周血的一小部分样本中安全而快速制备PRP凝胶。然后,将PRP凝胶局部应用于渗出的皮肤伤口,例如腿部,压力,糖尿病或手术性伤口。•Aurix™(NUO Therapeutics)(以前的Autologel™,Cytomedix)和Safeblood®(Safeblood Technologies),它们是两个相关但独特的自体血液衍生的制剂,可以在床边准备,以便立即应用。Aurix™和Safeblood®已专门销售用于伤口愈合。•某些设备可以在手术室设置中使用,例如Medtronic Electromedic,ELMD-500自动转移系统,等离子保护器设备或智能准备设备。•Magellan®自体血小板分离器系统(Medtronic)包括一个用于与麦哲伦自动型血小板分离器便携式桌面离心机一起使用的一次性套件。•Biomet Biologics通过FDA的510(k)过程获得了营销清除率,用于引力血小板分离系统(GPS®II),该过程使用一次性分离管进行离心和双插管尖端,以在外科手术部位混合血小板和血栓素。•JEN设备(DSM生物医学)是一种基于紧凑的离心系统系统,用于快速从小样品中制备PRP。
神经嵴衍生细胞(NCDC)在胎儿期以神经嵴细胞的形式存在,并分化为腭细胞,也存在于成人腭组织中,但其作用尚不明确。本研究用EGFP标记来自P0-Cre/CAG-CAT-EGFP(P0-EGFP)双转基因小鼠的NCDC,然后分析其在腭黏膜伤口愈合中的作用。作为腭伤口愈合模型,切除P0-EGFP小鼠左侧腭黏膜,在愈合区域检测干细胞标志物和角质形成细胞标志物。从正常腭黏膜提取NCDC,用干细胞培养基预培养14 d,然后分化为角质形成细胞或成骨细胞以分析多能性。伤口愈合过程从第二天的边缘粘膜再生开始,第 28 天整个伤口区域被含有 EGFP 阳性细胞 (NCDC) 的再生粘膜覆盖。EGFP 阳性细胞占愈合口腔粘膜中约 60% 的细胞,其中 65% 表达干细胞标志物 (Sca-1 + 、PDGFR α + ),30% 表达角质形成细胞标志物 (CK13 + )。在培养的腭粘膜细胞测试中,大约 70% 的 EGFP 阳性细胞表达干细胞标志物 (Sca-1 + 、PDGFR α + )。此外,在分化诱导条件下,培养的 EGFP 阳性细胞被成功诱导分化为角质形成细胞和成骨细胞。我们得出结论,NCDC 作为干细胞存在于成人腭组织中,并有可能在伤口愈合过程中分化为各种细胞类型。
伤口愈合是一个复杂的过程,涉及一系列连续重叠的级联事件,这些事件会响应一些外部的化学或物理刺激而发挥作用,并最终通过恢复丢失的组织而导致愈合。1 愈合过程分为四个阶段:止血、炎症、增殖和重塑。2 止血是由血小板激活引起的血凝块形成引发的,这可以防止微生物感染并促进基质组织。在增殖过程中,细胞、结缔组织、生长因子和血管生成因子会在伤口处积聚。重塑涉及细胞外基质的再合成,以维持现有细胞的死亡和新细胞的形成之间的平衡。3,4 然而,伤口恢复进度监测始终是一项重大挑战。在某些情况下,正常的愈合会变得缓慢。
