通过早期抗生物膜干预策略治疗难以愈合的伤口:伤口卫生 Christine Murphy、Leanne Atkin、Terry Swanson、Masahiro Tachi、Yih Kai Tan、Melina Vega de Ceniga、Dot Weir、Randall Wolcott、Júlia Ĉernohorská、Guido Ciprandi、Joachim Dissemond、Garth A James、Jenny Hurlow、José Luis Lázaro MartÍnez、Beata Mrozikiewicz-Rakowska 和 Pauline Wilson 《伤口护理杂志》 2020 29:Sup3b、S1-S26
甲基嗪(一种兽医二quil剂)与非法芬太尼的共同给药导致了严重的软组织损伤,从超刺激到深层组织坏死,甚至骨骼受累,因为多因素组织毒性具有多因素组织毒性。尽管甲基嗪具有非阿片类药物的性质,但仍可以增强并延长芬太尼的欣快作用,从而加剧了滥用的可能性。木马嗪组织损伤的发病机理是多因素的,但最类似于局部组织损伤的燃烧。与非法阿片类药物越来越多地被撒甲嗪掺杂,尤其是在费城等城市地区,相关伤口的普遍,尤其是在上肢,预计将会上升。管理这些伤口需要一种多学科的方法,手工外科医生和重建外科医生扮演着核心角色。本综述总结了历史背景,药效学,初步评估,伤口分类,算法治疗以及与木嗪相关的伤口的预期结果。
葡萄树干疾病(GTD)给全球葡萄行业造成严重的经济损失(Fontaine等,2016b; Mondello等,2018a)。休闲药包括各种分类学上的真菌(Gramaje等,2018; Mondello等人,2018b),可以单独或一起影响植物。除了在叶子和簇上引起外部症状外,这些病原体还会引起内部木材变色。症状表达中不可预测的不连续性是这些疾病的特征(Mugnai等,1999)。GTD包括影响成年和年轻葡萄藤的一系列疾病。esca复合物,杂化磷酸盐死亡和尤特巴死亡被认为是成年葡萄藤的主要GTD(Claverie等,2020)。ESCA复合物与许多系统发育多样的真菌有关(Mugnai等,1999),包括ascomycota和basidiomycota。与ESCA相关的comycetes包括血管病原体phaeomoniella chlamydospora和phaeoacremonium最低限度(Syn。pm。Aleophilum)(u rbez-Torres等,2014)和其他phaeoacremonium。Wood-decay basidiomycetes include Fomitiporia mediterranea in Europe ( Moretti et al., 2021 ), and other pathogens belonging to the genera Fomitiporella, Fomitiporia, Inocutis, Inonotus, Stereum , and Phellinus in non-European countries ( Cloete et al., 2011 ; White et al., 2011 );这些真菌已从受感染的葡萄树干中分离出来,但是它们在疾病病因学中的作用尚未完全了解(Surico等,2006; Bertsch等,2013; Gramaje等,2018),并且在近年来被重新考虑。botryosphaeria dieback是由20种以上的杂化磷酶科引起的,包括dothidea N. Luteum,N。Rib,Eliplodia Serita和D. Mutila(Van Niekerk等,2004; Taylor等,2005;ÚRbez-Torres and Gubler,2009; Amponsah et al。 2013)。eutypa dieback是由eutypa lata和其他diatrypaceai特殊的特殊的(Trouillas and Gubler,2010; Luque等,2012)。这些病原体可以单独从受影响的木材中回收,也可以与其他真菌(例如PA)相结合。衣原体,下午。Aleophilum,Sphaeropsis Mariorum和Diaporthempelina(PéRros等,1999)。GTD症状是多缩的,包括马刺和手臂的死亡,木材的变色或内部条纹,扇形木材坏死和白色腐烂;由于植物可以同时受到多种真菌的影响,因此在其中GTD中,某些症状可能重叠(Gramaje等,2018)。木材变色和de骨是由多种结构和生理变化引起的,由真菌产生的纤维素分解和木质素溶酶,由于凝胶和牙龈由联邦木质部分泌的凝胶和牙龈引起的血管闭塞细胞或木质部实质细胞的坏死,导致真菌毒素(Bertsch等,2013; Claverie等,2020)。所有这些变化都会导致木质部伏特定功能的木质部发生变化,从而导致水和养分运动(Mugnai等,1999; Sparapano等,2000; Andol和Andol et et al。,2011)。最近报道了(Mondello等,2018b),详细描述了与不同GTD的症状。叶子从未分离出GTD真菌(Bertsch等,2013),也显示了多种症状,也已经描述过这些症状(Mugnai等,1999;Amborabé等,2001; Mondello et al。,2018b);木材和木质部血管改变,真菌毒素和继发代谢物的沉积均有助于
持久细胞和生物膜持久细胞发现在生物膜内,表现出对抗生素的抗性,并与慢性感染的持续存在有关。 虽然抗菌剂杀死了大多数细胞,但即使存在抗菌剂,持久细胞仍然可行,并在抗菌剂浓度降低时会促进生物膜的再现(Lewis,2010; Wood,2013)。 减少AMR的方法:•提高识别感染的能力并首先防止感染的能力•改善抗生素和抗真菌剂的使用,以降低抵抗力发展的风险•预防,诊断和管理生物膜,同时牢记并不是所有生物膜都有害处和对系统的差异•一旦建立了差异的知识•一旦建立了差异的知识•一旦建立了差异•了解•一旦了解系统的差异••一旦了解系统的差异•多学科团队 - 例如 微生物学,糖尿病学和药房,以帮助复杂病例持久细胞和生物膜持久细胞发现在生物膜内,表现出对抗生素的抗性,并与慢性感染的持续存在有关。虽然抗菌剂杀死了大多数细胞,但即使存在抗菌剂,持久细胞仍然可行,并在抗菌剂浓度降低时会促进生物膜的再现(Lewis,2010; Wood,2013)。减少AMR的方法:•提高识别感染的能力并首先防止感染的能力•改善抗生素和抗真菌剂的使用,以降低抵抗力发展的风险•预防,诊断和管理生物膜,同时牢记并不是所有生物膜都有害处和对系统的差异•一旦建立了差异的知识•一旦建立了差异的知识•一旦建立了差异•了解•一旦了解系统的差异••一旦了解系统的差异•多学科团队 - 例如微生物学,糖尿病学和药房,以帮助复杂病例
摘要:受损的愈合伤口不会及时,有序地通过正常的治愈过程进行,虽然它们最终确实愈合,但它们的愈合并不是最佳的。慢性伤口一直没有释放数周或数月。仅在美国,慢性伤口每年影响约850万人,成本约为28-90亿美元,而不考虑患者遭受的心理和身体疼痛和情感痛苦。随着老年人口和合并症(例如糖尿病,高血压和肥胖症)的发生率的预计,这些数字只有预计将来会增加。在过去的几十年中,科学家使用了多种方法来治疗慢性伤口,但不幸的是,迄今为止,还没有有效的治疗方法。的确,虽然有成千上万种用于打击癌症的药物,但只有一种药物被批准用于治疗慢性伤口。这部分是因为伤口愈合是一个非常复杂的过程,涉及许多阶段,必须及时地发生。此外,尚未开发完全模拟人类慢性伤口的模型。在这篇综述中,我们评估了目前用于研究愈合和慢性非愈合伤口的生物学的各种模型。我们还讨论了我们继续开发慢性伤口模型的重要性,这些模型更加紧密地模仿了人类的慢性伤口模型,并且可以用于测试潜在治疗以治愈慢性伤口。中,本文还强调了一种模型,显示出巨大的希望。该模型使用年龄和肥胖的DB / DB - / - 小鼠,以及发展的慢性伤口显示了人类慢性伤口的特征,包括增加氧化应激,慢性炎症,微脉管系统受损,胶原基质异常,胶原蛋白基质沉积,缺乏重新上皮化的缺乏,并且具有多型贝克氏菌的自发性。
简单的摘要:慢性伤口由未能完成愈合过程的伤害组成。这种类型的伤口经常被病原体感染,代表了一种具有挑战性的医疗状况,造成健康问题的实质原因以及医疗系统的经济负担。的确,某些病原体产生封闭在基质中的多细胞结构的能力,称为生物膜,大大吸引了治疗的功效。因此,这项工作旨在加强对感染慢性伤口的病理生理学和治疗的知识。出于这个目的,这项工作对伤口愈合过程,慢性伤口的发病机理进行了全面概述,并特别关注被生物膜形成病原体感染的慢性伤口以及抗生物膜治疗策略。与目前正在开发的几种方法一起,描述了临床环境中目前使用的以从慢性伤口中去除生物膜的策略。这些新型策略有可能抵消病原体产生生物膜,杀死生物膜内的病原体,靶向生物膜分子或激活针对感染的免疫系统的能力。结合使用的这些策略可能会导致患者更好地治疗患者,从而避免出现严重的医疗保健结果。
伤口护理研究旨在加速组织再生,同时尽量减少疤痕形成。由于愈合过程的脆弱性,任何阻碍伤口愈合的因素都会增加伤口变成慢性伤口或更糟的不愈合伤口的可能性。[1] 致病菌在伤口定植并形成生物膜(见 S1 部分,支持信息)是一种常见的并发症,会减缓伤口愈合并引发慢性炎症。在生物膜中,细菌可以对环境逆境产生抵抗力 [2],因此在面对常用药物治疗时具有弹性。有必要开发替代解决方案,特别是对于世界上缺乏及时进行即时治疗所需基础设施的地区,例如经济困难地区或武装冲突地区。 [3,4] 例如,2017 年,全球 3,890 万至 6,290 万例败血症相关死亡病例中,1,010 万至 1,200 万例(占全球死亡人数的 19.7%)中有 85% 发生在中低收入国家。 [5] 如果能获得更有效的伤口护理,这些死亡病例和许多非致命性截肢病例中的许多病例本可以得到预防。即使在医疗基础设施丰富的地区,抗生素耐药性感染仍然构成重大威胁。美国疾病控制中心报告称,每年有超过 280 万例抗生素耐药性感染导致 3.5 万多人死亡。 [6] 欧盟委员会估计,抗生素耐药性每年导致欧盟 2.5 万人死亡,全球 70 万人死亡,并预测到 2050 年抗生素耐药性传染病造成的死亡人数将超过癌症。[7] 除了眼前的医疗保健挑战外,这些感染还带来严重的经济影响,美国和欧盟每年的医疗保健费用和生产力损失分别高达 315 亿美元 [8] 和 15 亿欧元 [7]。目前有各种有效的局部伤口愈合解决方案,[9,10] 但相比之下,深部伤口的替代方案却很少。局部伤口愈合历史悠久:缝合伤口可以追溯到新石器时代,[11] 可吸收的动物结扎线在早期就被引入
局限性 •患者可能对牛胶原蛋白敏感或过敏反应,尽管这种反应相对罕见 •长期或过量使用银基产品可能会导致银中毒,但QuoroGel 中使用的纳米银设计为在低浓度下有效,从而降低了这种风险 •QuoroGel 等高级伤口护理产品可能比传统伤口敷料更昂贵,这可能会影响可及性,特别是在资源匮乏的环境中 •这项研究缺乏对照或主动比较、患者和医生盲法以及标准化程序。此外,本报告仅基于五个病例系列的小样本。因此,建议进行随机临床试验,以增加样本量来研究伤口愈合率。
本研究旨在探索纯水蛭唾液及其与优色林的组合对感染金黄色葡萄球菌的伤口的影响。实验包括在动物胸部背部区域诱导伤口。为了感染伤口,将 100 µl 密度为 0.5 McFarland 的金黄色葡萄球菌细菌引入伤口部位。使用 75 只雄性 Wistar 大鼠,分成 5 组,每组 15 只,每组进一步细分为 3 个亚组:用呋喃西林(阳性对照)、水蛭唾液、水蛭唾液软膏、优色林软膏和阴性对照(未治疗)治疗。随后,在第 7、14 和 21 天从伤口部位采集样本,以量化细菌存在并评估伤口组织恢复情况。宏观观察显示,在 14 天内,水蛭唾液软膏和纯水蛭唾液均具有良好的伤口愈合能力。微生物分析证实了水蛭唾液及其软膏配方的抗菌功效。根据研究结果,可以合理地推断,水蛭唾液软膏和纯水蛭唾液在促进伤口愈合和促进皮肤上皮组织再生方面均表现出令人称赞的功效。
在伤口愈合过程中,电信号在细胞对组织损伤的反应中起着至关重要的作用,外部电场 (EF) 可以加速愈合过程。在这里,我们开发了一种独立的、可穿戴的、可编程的电子设备来管理良好控制的外源性 EF,旨在加速体内小鼠模型中的伤口愈合,以提供临床前证据。我们通过组织学染色评估上皮化率和 M1/M2 巨噬细胞表型的比率来监测愈合过程。经过三天的治疗,M1/M2 巨噬细胞比率下降了 30.6%,与对照组相比,EF 治疗伤口的上皮化趋势呈非统计显著的 24.2% 增加。这些发现表明该装置通过促进修复性巨噬细胞而非炎性巨噬细胞来缩短炎症期,并加速上皮化。我们的可穿戴设备支持将程序化 EF 应用到体内伤口管理的理论基础,并为进一步开发基于调节巨噬细胞和炎症以更好地愈合伤口的技术提供了令人兴奋的基础。