定义当前电力市场“规则”的机构、政策和经济学对于塑造电力行业的结果与技术进步同样重要。EMP 旨在通过严格分析支持成功过渡到清洁、高效、可靠和负担得起的电力行业的政策、经济和技术问题来产生影响。为此,我们采用了一系列适合当前主题的跨学科方法和工具,包括原始数据、经济和统计分析;建模;以及基于调查和访谈的研究。我们通过直接技术援助、出版物和演示文稿向公共和私人决策者提供见解和信息,并将我们的工作公开,以帮助和告知所有感兴趣的利益相关者。
摘要:一组基于碘化铜的杂种半导体,具有2D-CUI(L)0.5(L =有机配体)的一般公式,并在结构上表征了。所有化合物都是由一维(1D)铜碘化物楼梯链制成的二维(2D)网络,这些楼梯链由含有双氮的二氮相互连接。由光吸收和发射实验和密度功能理论(DFT)计算结果表明,可以通过调节有机配体的最低未启用的分子轨道(LUMO)能来系统地调节其光致发光(PL)。第一次在选定的2D -CUI(L)0.5结构的单晶进行电荷运输测量值,结果表明,它们具有p-类型电导率,HALL的迁移率约为1 cm 2 V -1 s -1的2D -CUI(PM)0.5和0.5和0.13 cm 2 v -1 s -1 for 2dddd -cui(pps)0.5(pz)0.5(pz)0.5。 这些值与典型的高发光有机半导体的迁移率相当或高。 这项工作表明,强大的高维碘化物混合动力半导体有望被认为是用于LED设备的新型发射层。电荷运输测量值,结果表明,它们具有p-类型电导率,HALL的迁移率约为1 cm 2 V -1 s -1的2D -CUI(PM)0.5和0.5和0.13 cm 2 v -1 s -1 for 2dddd -cui(pps)0.5(pz)0.5(pz)0.5。这些值与典型的高发光有机半导体的迁移率相当或高。这项工作表明,强大的高维碘化物混合动力半导体有望被认为是用于LED设备的新型发射层。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构或加利福尼亚大学的董事会的观点和观点。这项工作得到了美国能源部的合同第号能源效率和可再生能源助理部长的支持de-AC02-05CH11231,加利福尼亚能源委员会合同EPC-15-037和AERECO SA根据合同号FP0000003428 037和AERECO SA根据合同号FP00003428。
免责声明本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。欧内斯特·奥兰多·劳伦斯·伯克利国家实验室是机会均等的雇主。
在过去十年中,对便携式电子设备的需求迅速增加,这促使电池生产的增长增长。自从1990年代开发作为商业能源储能解决方案以来,锂离子电池(LIB)由于其较长的周期寿命,高能量密度,低自我放电速率和高工作电压而引起了科学和工业的极大关注。生产LIB需要大量的聚合物粘合剂 - 通常是聚偏二氟乙烯(PVDF),以进行处理和性能。但是,由于该材料是石化衍生的,因此它远非“绿色”或可持续性。另一方面,聚合物及其构建块在整个自然界中被广泛发现,并且可以以低成本从生物量中获得。因此,用生物质衍生的粘合剂代替PVDF是减少LIB环境足迹的一种有前途的方法。此外,聚合物粘合剂在下一代电池性能中起着至关重要的作用。例如,硅(Si)是一种有前途的大容量阳极材料,因为它具有高理论能力(4200 mahg -1),工作势较低,并且在地壳中具有很高的丰度。但是,由于传统的粘合剂仅与硅的天然表面相互作用,并且无法维持电极的长期完整性,因此其在电荷/放电期间的巨大变化往往会导致循环寿命缩短。自然衍生的聚合物由于其高结构优势而在该角色上取得了更好的成功。在这篇综述中,我们总结了源自各种生物质源的硅阳极粘合剂的最新发展,重点是聚合物特性及其对电池性能的影响。我们根据自己对这些作品的评估提出了各种观点,并对该领域的未来前景进行了简要评论。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
我们提出Mistiqs,这是一种用于时间相关的量子模拟的乘法软件。mistiqS提供了端到端功能,用于模拟由多个量子计算平台跨时间依赖的海森伯格·汉密尔顿(Heisenberg Hamiltonians)模拟系统的量子多体动力学。它提供了高级编程功能,用于生成量子电路的中间表示,可以将其转化为各种行业标准表示。此外,它提供了电路汇编和优化方法的选择,并促进了当前基于云的量子计算后端的量子电路的执行。mistiqs是一个可访问且高度灵活的研究和教育平台,使更广泛的科学家和学生可以对当前量子计算机进行量子多体动力学模拟。©2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。