氯化钙(CACL 2)是氯化物组的无机化学物质,它被广泛用作冬季道路上的降落剂之一。进行了实验室实验,以检查道路盐(NaCl)对土壤生物(土壤动物,微生物和浮游生物)的影响。土壤居住的腋窝Vulgare死于高浓度的氯化钙处理。在高浓度的氯化钙下的烟曲霉的加工时间越长,生存率就越低。A. Vulgare在1 mm的氯化钙浓度下死亡16%。在椎间盘扩散测试中,抑制区的直径随氯化钙浓度成比例地增加。微球菌sp。的氯化钙抑制活性略高于三种土壤微生物(芽孢杆菌,假单胞菌和Xanthomonas mattophilia)的三种土壤微生物。使用15.0 mM氯化钙溶液时,约90%的微生物(浮游植物)死亡。在这项研究中,高浓度的氯化钙影响了土壤动物,土壤微生物和水微生物的存活。如果氯化物溶于水中并流入河流或湖泊,则可能导致土壤或水生生态系统的破坏,并威胁到小生物的生存。
Bart, R., Cohn, M., Kassen, A., McCallum, EJ, Shybut, M., Petriello, A., Krasileva, K., Dahlbeck, D., Medina, C., Alicai, T., Kumar, L., Moreira, LM, Neto, JR, Verdier, V., Santana, MA, Kositcharoenkul, N., Vanderschuren, H., Gruissem, W., Bernal, A., & Staskawicz, BJ (2012)。木薯细菌性枯萎病菌株的高通量基因组测序可识别出可持久抗性的保守效应因子。《美国国家科学院院刊》,109 (28)。 https://doi.org/10.1073/pnas.1208003109 Cohn, M.、Bart, RS、Shybut, M.、Dahlbeck, D.、Gomez, M.、Morbitzer, R.、… Staskawicz, BJ (2014)。Xanthomonas axonopodis 的毒性由转录激活因子样效应物介导的木薯中 SWEET 糖转运蛋白的诱导所促进。分子植物-微生物相互作用,27 (11),1186–1198。https://doi.org/10.1094/MPMI-06-14-0161-R Castiblanco, LF、Gil, J.、Rojas, A.、Osorio, D.、Gutiérrez, S.、Muñoz-Bodnar, A.、…
Xanthan Gum是一种通过发酵源自Xanthomonas Campestris的多功能生物聚合物,它因其在各种行业(尤其是食品和化妆品中)的商业应用而引起了极大的关注。然而,由于发酵中使用的昂贵碳源,其生产成本仍然很高。这项研究探讨了利用食品和饮料浪费的可行性,包括西瓜皮,香蕉皮,面包店废物和米淀粉水,作为Xanthan发酵的经济和环保替代品。X. Campestris NCIM 2961用于发酵,并且优化了各种参数,例如pH,温度,孵育期和搅拌,以增强黄金的产量。结果表明,与标准培养基相比,替代底物具有黄原生产的潜力,某些条件产生的牙龈产量相当甚至更高。这项研究的另一个目的是将黄原胶作为琼脂替代品的潜力。微生物的生长,例如大肠杆菌,金黄色葡萄球菌和酿酒酵母在黄原取代的琼脂板上成功。这项研究强调了为可持续生物聚合物生产带来的废物流的前景,从而提供了经济和环境利益。
INTRODUCTION Rhizosphere bacteria that positively influence plant growth and productivity of commercially important crops are commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR) and include bacteria of the genera Azotobacter, Azospirillum , Arthrobacter, Bacillus, Agrobacterium, Rhizobium, Flavobacterium, Burkholderia, Enterobacter,克莱伯斯ella,假单胞菌,xanthomonas和serratia。根渗出液的分泌有助于调节微生物动力学及其与植物的相互作用,进而在促进植物生长中起着重要作用。此外,根际中的这种共生相关性还赋予对由真菌,细菌和病毒病原体引起的各种疾病的保护。这些细菌直接通过使用刺激性生长素和细菌的组合或通过刺激性生长素和细菌的形式组成的刺激性的生长素,gibberellins和componial compan和compoa,并通过刺激性的生产力和细菌来通过刺激性的生长蛋白和胞质的组合来直接影响植物的生长和分泌。 N.I.K.al-Barhawee和F.A.al-Wazzan。2025。从新分子表征的根瘤菌菌株中产生吲哚-3-乙酸的估计。农业科学全球创新杂志13:85-94。[2024年9月2日收到; 2024年10月6日接受;出版于2025年1月1日]
摘要 由水稻白叶枯病 (BLB) 引起的水稻细菌性叶枯病 (Xoo) 是水稻生产的一个主要制约因素。一些野生型水稻品种对 BLB 的天然抗性是由于 SWEET 基因启动子区中的效应结合元件 (EBE) 发生突变。SWEET14 是大多数 Xoo 病原体 TALE 最常针对的基因之一。因此,本研究旨在通过 CRISPR/Cas9 介导的基因组编辑技术在籼稻品种 CO51 中的 OsSWEET14 基因的 EBE 中创建新的突变,以赋予其对 BLB 的抗性。使用未成熟胚进行农杆菌介导的转化,然后进行再生,从六个独立转化事件中获得了 11 株转基因植物,其中九株植物(属于五个事件)的靶序列发生突变。对四种突变植物(属于三个事件)进行的生物测定研究结果显示,两种植物(属于两个事件)对 BLB 具有抗性/中度抗性。
维管植物病原体通过宿主静脉长距离传播,导致危及生命的全身性感染。相反,非维管病原体仍然局限于感染部位,引发局部症状发展。维管疾病和非维管疾病的对比特征表明病因不同,但每种疾病的基础仍不清楚。在这里,我们表明水解酶 CbsA 充当维管植物和非维管植物致病机制之间的表型转换。cbsA 在黄单胞菌科的维管植物病原菌基因组中富集,而在大多数非维管物种中不存在。CbsA 表达使非维管黄单胞菌引起维管病,而 cbsA 诱变导致维管病减少或非维管病症状发展增强。系统发育假设检验进一步表明,cbsA 在多个非维管谱系中丢失,最近被一些维管亚群获得,这表明维管病是祖先的。我们的研究结果总体证明了单个基因座的获得和丢失如何促进复杂生态特征的进化。
摘要。Rifhani NF,Apriana A,Sisharmini A,Santoso TJ,Trijatmiko KR,Slamet-Loedin IH,Yunus A. 2023。 CRISPR/CAS9模块的构建和芳族水稻CV的遗传转化。 Mentik Wangi用于开发细菌叶枯萎病。 生物多样性24:3258-3268。 米CV。 Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。 该细菌会对植物造成损害,从而降低作物产量。 这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。 Mentik Wangi用于发展BLB抗性。 使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。 使用农杆菌Tumefaciens进行。 构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。 结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。 Mentik Wangi。 需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。Rifhani NF,Apriana A,Sisharmini A,Santoso TJ,Trijatmiko KR,Slamet-Loedin IH,Yunus A.2023。CRISPR/CAS9模块的构建和芳族水稻CV的遗传转化。Mentik Wangi用于开发细菌叶枯萎病。生物多样性24:3258-3268。米CV。 Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。 该细菌会对植物造成损害,从而降低作物产量。 这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。 Mentik Wangi用于发展BLB抗性。 使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。 使用农杆菌Tumefaciens进行。 构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。 结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。 Mentik Wangi。 需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。米CV。Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。该细菌会对植物造成损害,从而降低作物产量。这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。Mentik Wangi用于发展BLB抗性。使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。使用农杆菌Tumefaciens进行。构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。Mentik Wangi。需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。
摘要:香蕉是重要的主粮作物,也是约 150 个热带和亚热带国家小农户的收入来源。香蕉黄单胞菌枯萎病 (BXW)、血病和莫科病等几种细菌性疾病对香蕉生产造成了重大影响。在同一块田地中同时存在细菌病原体和其他几种病原体和害虫的地区,香蕉产量差距很大。据报道,由 Xanthomonas campestris pv. musacearum 引起的 BXW 病是东非最具破坏性的香蕉病。这种疾病影响该地区种植的所有香蕉品种。只有野生型二倍体香蕉 Musa balbisiana 对 BXW 病具有抗性。开发抗病香蕉品种是控制疾病最有效的策略之一。基于 CRISPR/Cas 的基因编辑技术的最新进展可以加速香蕉改良。通过敲除致病易感性 (S) 基因或激活植物防御基因的表达,利用 CRISPR/Cas9 介导的基因编辑技术来产生对细菌病原体的抗性,已取得了一些进展。本文概述了基因编辑在控制青枯病方面的应用的最新进展和前景。
摘要 水稻细菌性叶枯病 (BLB) 被认为是一种具有经济价值的疾病,因为该疾病会导致所有水稻种植区产量严重下降。病原菌水稻白斑病 (Xoo) 产生的转录激活因子样效应物 (TALE) 分子与 SWEET 基因启动子的效应物结合元件 (EBE) 结合并激活 SWEET 基因的转录,使植物易患该疾病。某些水稻基因型对 Xoo 的先天抗性是由于 SWEET 基因上游调控区中的 EBE 发生突变。CRISPR 介导的易感基因/启动子的靶向修饰是提高水稻 BLB 抗性的有效方法。本研究尝试通过在当地流行的水稻基因型 CO51 中引入 OsSWEET13 基因的 EBE 插入缺失来抑制 TALE 触发的信号传导,采用 CRISPR/Cas9 介导的基因组编辑工具,以赋予 BLB 抗性。使用未成熟胚进行农杆菌介导的转化,然后进行再生,产生了四个独立的转化事件。发现代表三个事件的五株植物在目标序列中有一个核苷酸缺失。EBE 中的这些缺失突变可能会干扰相应 TALE 的结合,从而赋予对某些 BLB 菌株的抗性。
细菌和酵母是从鳄梨树的叶子,花朵和果实中分离出来的几年,这些鳄梨树已经被杀虫剂喷洒了几年。分离出的1050种微生物,37%抑制了谷甲藻菌菌群在马铃薯葡萄糖琼脂上的菌丝体生长。这些生物中的许多生物还显着降低了质真菌在覆盖弱糖琼脂的孢子虫的孢子发芽,而比细菌的酵母比更有效。一些细菌和酵母还减少了鳄梨叶盘上病原体的孢子发芽。主要的抑制细菌组为芽孢杆菌属,拮抗酵母菌包括金黄色葡萄球菌。以及各种粉红色和白色菌落类型。杆菌的抗生素耐药物,两种酵母菌的甲状腺素抗分离株和一个金黄色卵巢菌。喷在鳄梨叶上,并在Phylloplane上存活至少2个月。根据这些测试的性能,选择了生物防治和定殖电势的分离株,并测试了它们提供疾病控制水果的能力。在重复测试中,几种细菌和酵母在用病原体接种果实之前施用脱离的鳄梨果实的病变发育和病变大小。