发光二极管及 LED 组件制造、集成电路组装、电源模块组装、板上芯片 (COB)、表面贴装技术 (SMT)、印刷电路板组装 (PCBA)、微型线圈绕制 (线圈) 和卡片层压
成立于2020年,Saliogen Therapeutics,Inc。是一家私有细胞和基因疗法生物技术公司,推进了一种新的遗传医学类别,称为Gene Coding™,它通过添加新的基因组代码来打开,关闭或修改新基因或现有基因的功能。我们正在推进潜在的治疗疗法,最初的重点是为更多的遗传疾病患者开发耐用,安全和可及的遗传医学。在saliogen上,我们不仅是为了实现科学的巨大潜力而驱动的,而且还取决于我们致力于开发可以对患者生活产生重大影响的药物的奉献精神和承诺。在http://www.saliogen.com/上了解更多信息。
从:辛迪·阿伦斯(Cindy Arens)到:玛丽·德·奥尔德雷特(Mary de Alderete),镇务员:可持续列克星敦委员会会议日期:2025年1月23日,可持续列克星敦委员会的会议将于2025年1月28日星期二下午6:00 pm至7:15 pm举行。会议将根据城镇经理的举办虚拟会议的程序,使用城镇变焦帐户举行。下面提供了会议的链接。预计会议的议程将是:
在新系统中,两个节点是由Yttrium Orthovanatrate晶体制成的纳米制造结构(YVO4)。激光器用于激发这些晶体内的稀土金属Ytterbium原子(Yb3+),导致每个原子散发出与之纠缠的光子。来自两个独立节点的原子的光子,然后进入检测到它们的中心位置。该检测过程触发了一种量子处理方案,该方案导致在成对的ytterbium原子之间创建纠缠状态。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
本协议描述了用于测序标准COI标记的实验室协议(即DNA条形码),多路复用多达2,280个标本(24 x 96井板,每个板的一个阴性对照孔),以在牛津纳米孔技术上运行,in 10.4.1在占用量序列仪上流动细胞。所有索引都是通过PCR使用标记的引物来完成的,这意味着图书馆准备仅在单个管中进行,所有2,280个PCR均得到了合并。这是通过不对称索引来完成的,其中带有96个唯一分子标识符(UMIS)的正向引物提供了映射到96孔板的孔,而带有24 UMIS的反向引物则将其映射到板上。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2025.02.17.638518 doi:Biorxiv Preprint
摘要 - 高光谱成像技术的最新演变和新的新兴应用程序的扩散按下了多个时间高光谱图像的处理。在这项工作中,我们提出了一种新型的频谱拆解(SU)策略,使用出色动机的参数末端记录来说明时间频谱变异性。通过使用状态空间公式来表示多个时空混合过程,我们能够利用贝叶斯过滤机制来估计末端的变异性系数。假设丰度的时间变化在短时间间隔很小,则采用了预期最大化(EM)算法的有效实施来估计丰度和其他模型pa-Rameters。仿真结果表明,所提出的策略优于最先进的多阶段算法。
大脑电路涉及大量的反馈回路,其动力学取决于相互作用的延迟。脑启发的储层计算利用互连单元的丰富复发动力学来执行输入的任务。特别是,时间延迟储层计算使用非线性延迟反馈回路架构中的高维瞬态动力学,例如时间序列预测和语音分类。最近还证明,通过包含多个延迟的延迟分化系统的动态属性修改,以提高时间延迟储层计算的性能。在这里,我们探索了这种基本和技术重要性的这种神经启发的计算的另一个方面:在混合物中分离和预测两个信号的能力,在混合物中,每个信号由于其潜在的动力学而具有一些内在的可预测性。使用混沌输入信号混合物的多层和多层储层计算进行了说明。与独立的组件分析和相关的无监督学习技术相反,这里的上下文在于平行监督每个信号的动力学学习,以便在训练集之外预测每个信号的每个信号。此外,将混沌信号的超渗透到单个输入通道中增加了任务的难度。我们用确定性和随机系统发出的各种信号来量化和解释这种性能。此外,我们还探索了深度延迟储层计算机的体系结构。我们的发现表明,多延迟储层计算可以学习和预测两个叠加确定性信号的未来。预测(因此分离)在单层和多层时间延迟的预订计算中可能会明显更高。混合信号的带通滤波以除去较低和较高的频率,将预测提高了几%。在某些情况下,矛盾的是,增加混合物中一个混沌信号的比例实际上可以帮助学习另一个混乱信号,从而稍微改善其预测。