Daniel Jafferis 等人的最新《自然》论文《量子处理器上的可穿越虫洞动力学》引起了广泛关注。《自然》论文讨论了一项实验,其中谷歌的 Sycamore 量子处理器用于模拟具有 5 个项的稀疏 N = 7 SYK 模型(学习汉密尔顿量)。《自然》论文表明,学习汉密尔顿量保留了具有 210 个项的 N = 10 SYK 模型的关键引力特性,足以产生可穿越虫洞行为。我将研究该实验并讨论有关该实验的一些哲学挑战,以纪念 Ian Hacking。最近,Norman Yao 和两名研究生发现了 Jafferis 等人的学习汉密尔顿量中的多个缺陷,并在《自然》论文上上传了一条评论。正如预期的那样,Jafferis 和他的团队找到了一种简单的方法来澄清误解。他们找到了一种物理依据,可以避免这个问题。在本文中,我阐明了姚和他的学生提出的主要论据以及 Jafferis 等人找到的挽救他们所学的汉密尔顿的方法。我将以对所学汉密尔顿的背景下这一最新发展的哲学评论结束本文。
●本技术报告中所示的规格目前仅为概述。本技术报告中的任何产品如有修改,以用于进一步开发和产品改进,恕不另行通知。●使用产品时,建议使用官方授权的规格。●如对我们的产品及其用途有任何疑问,请随时与我们联系。日本大阪府八尾市北久保寺1丁目4-33 邮编 581-0071 www.hosiden.com/en/ 截至 2024 年 11 月 (TE2024-22 )
Evaluation of Reliability and Lifetime of 650-V GaN-on-Si Power Devices Fabricated on 200-mm CMOS-Compatible Process Platform for High-Density Power Converter Application Shan Yin, Yiming Lin, Ronghui Hao, Shoudong Jin, Chuan He, Weigang Yao, Xingjun Li, Qingyuan He, Xiaoqing Pu, Xiaoliang Su, Yanbo Zou, Hui Cai, Kye-Jin Lee, Mike Wang, Harry Guo, Ke Shen, Felix Wang, H.-C. Chiu, Larry Chen, Denis Marcon, Roy K.-Y. Wong Innoscience Technology Co., Ltd., China
BP神经网络隐层节点确定方法. 计算机技术与发展 2018; 28(4): 31-35. doi: 10.3969/j.issn.1673-629X.2018.04.007。 2. 温疆, 廖建忠. 岩质边坡稳定性分析方法综述. 西部探矿工程 2012; 24(6): 153-155. doi: 10.3969/j.issn.1004-5716.2012.06.053。 3. 毛江, 赵洪达, 姚建军. 人工神经网络的应用及展望. 电子设计工程 2011; 19(24): 62-65。 4. 李红莲, 柴庆元. 人工神经网络与神经网络控制(NNC)的发展与展望。河北科技图文信息技术有限公司. 2009; 26(5): 44-46. doi: 10.3969/j.issn.1008-6129.2009.05.012。 5. 姚建国. 人工神经网络在岩土力学与工程中的局限性及对策. 中国岩石力学与工程学会. 第八届全国岩石力学与工程学术会议论文集. 2004;385-388。 6. 张建平, 陈倩. BP网络在边坡稳定性分析中的应用. 西南交通大学学报. 2001; 36(6): 648-650。 7. 杨晓峰, 陈天洪. 人工神经网络的优缺点. 计算机科学. 1994; 21(2): 23-26。 8. 冯晓霞, 周林伟, 曾绍琪, 李伟昌. 边坡岩体稳定性分析. 工程与建设 2017; 31(2): 244-247. doi: 10.3969/j.issn.1673-5781.2017.02.032.
AUTHOURS: Xiling Yao Research Fellow Singapore Institute of Manufacturing Technology 71 Nanyang Drive, Singapore 638075 Email: yaox0006@e.ntu.edu.sg Seung Ki Moon* Assistant Professor Singapore Centre for 3D Printing School of Mechanical & Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798 Phone: +65-6790-5599传真: +65-6792-4062电子邮件:skmoon@ntu.edu.sg guijun bi bi bi科学家新加坡制造技术研究所71 Nanyang Drive,新加坡638075,新加坡638075电子邮件:新加坡638075电子邮件:jwei@simtech.a-star.edu.sg(*通讯作者)确认:
dev> dennis诉Chiristensen 1,Regina Dittmann 2,Bernabe Linares-Barranco 3,Abu Sebastian 4,Manuel Le Gallo 4,Andrea Redaelli 5,Stefan Slesozeck 6,Slesozeck 6,Thomas Mikolajick 6,7 Shi-jun。 Liang 12,Feng Miao 12,Mario Lanza 13,Tyler J Quill 14,Scott T Keene 15,Alberto Salleo 14,Julie Grollier 16,Danijela Markovi´ c 16,Alice Mizrahi 16,Peng Yao 17,Peng Yao 17,J Joshua Yang 17,J Joshua Yang 17,Giacomo Indventa,Johiacomo Indventa,John dim suna stra,约翰·鲍安·鲍安·鲍安·帕纳,亚历山大·瓦伦蒂安22,约翰内斯·费尔德曼(Johannes Feldmann)1,Xuan li 23,Wolfram H P Pernice 24,25,Harish Bhaskaran 23,Steve Furber 26,Emre Nefti 27,Franz Scherl 27,Franz Scherl 28,Wolfggang Maass 28,Srikanth Ramaswamy 29 Kim 31,Gouhei Tanaka 32,Simon Thorpe 33,Chiara Bartolozzi 34,Thomas,Cleland 35,Christoph Posch 36,Shihchii Liu 18,Gabriella Panuccio 37 18,西尔维亚·托卢(Silvia Tolu), 14,Roberto Galeazzi 40,Martin Ejsing Christensen 41,Sune Holm 42,Daniele Ielmini 43和N Pryds 1
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
水的供应,水力和粮食安全是中亚社会在人类时代的主要关注点(Jalilov等,2016; Reyer等,2017)。与工业前级别相比,在本世纪末2 C以下2 C以下的全球变暖限制了全球变暖(Meinshausen等,2020)。然而,CA的温度趋势上升已经显着高于全球平均值(Yao等,2021)。因此,如果越过这个阈值,则假定社会和经济影响是严重的(Reyer等,2017)。CA的气候主要由干旱,半干旱,温带和半渗透区域主导(Duan等,2019; Jalilov等,2016; Yao等,2021)。此外,这些地区在苏联崩溃后经历了极端的非校园和经济状况(Lioubimtseva&Henebry,2009年)。根据Pekel等人。(2016年),在1984年至2015年之间,CA和中东发生了超过70%的全球永久性地表水损失。地下水在全球范围内提供超过36%的饮酒和42%的农业水(Ashraf等,2021)。但是,其可用性受蒸发和人类戒断的增加影响。大约33%的地球人口生活在封装地中海,亚洲,中东和北非的半干旱和干旱地区,被归类为水压力区域(Vörösmarty等,2010)。全球综合综合(Vörösmarty等,2010)得出的结论是,世界上约80%的人口遭受了高水平的水安全性。山是加利福尼亚州当地河流的最重要水源。他们在冬季和秋季中通过冰川,多年冻土和雪保持前态(Chen等,2016)。在CA的更快的全球变暖趋势下,降水量和融雪/冰川比和降水
光伏工业硅的再生浪费对高性能 - 锂离子电池阳极Kai Wang*,Xiao-bin Zhong,Yue-xian Song,Yao-hui Zhang,Yan-gang Zhang,Yan-Gang Zhang,Xiao-Gang You* Zhang, Xing-Liang Yao, Feng Li, Jun-Fei Liang * , Hua Wang * Abstract The diamond-wire sawing silicon waste (DWSSW) from the photovoltaic industry has been widely considered as a low-cost raw material for lithium-ion battery silicon-based electrode, but the effect mechanism of impurities presents in DWSSW on lithium storage performance is still not well understood, meanwhile, it迫切需要制定一种将DWSSW颗粒变成高性能电极材料的策略。在这项工作中,使用原位蚀刻技术对DWSSW中杂质的发生状态进行了仔细的分析。然后,小说Si@c@sio x@pal- n-c复合材料是通过原位封装策略设计的。获得的Si@C@SiO X@Pal -N -C电极在当前密度为1.0 A·G -1的情况下,初始库仑效率(ICE)的高第一容量为2343.4 mAh·G -1,最初的库仑效率(ICE)为84.4%,并且可以在200个周期后提供令人印象深刻的984.9 mAh·g -1。组合的数值模拟模型计算,Si 4+ /Si 0和Si 3+ /Si 0价比例的增加,SIO X层中的价状态态导致von Mises应力减少,这最终改善了循环结构稳定性。同时,Sio X层上的多孔2D-3D铝/氮(Al/N)共掺杂的碳层和纳米线,由于其发达的层次孔结构,可以为锂储存提供丰富的活性位点,从而促进离子运输。更重要的是,Si@c@sio x@pal-n-c // LifePo 4完整单元的性能在实际应用中显示出巨大的潜力。关键字锯硅废物;原位封装;铝/氮共掺杂;多孔碳纳米线;锂离子电池K. Wang*,X.-B。Zhong,Y.-X. 歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cnZhong,Y.-X.歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cn
