缩写和首字母缩略词列表 BaU 一切照旧 cap Vapita 资本支出 资本支出 CBAM 碳边境调整机制 CDD 制冷度日数 CE 循环经济 CH 4 甲烷 CO2 二氧化碳 CO 2 eq 二氧化碳当量 EBRD 欧洲复兴开发银行 ECM 能源节约措施 ECRB 能源共同体监管委员会 EE 能源效率 EED 能源效率指令 EIA 环境影响评估 EnC 能源共同体 EnCS 能源共同体秘书处 ENTSO-E 欧洲输电系统运营商网络 EPBD 建筑能效指令 ESCO 能源服务公司 ESIA 环境和社会影响评估 ETS 排放交易体系 EU 欧盟 EV 电动汽车 FEC 最终能源消耗 FiT 上网电价 GACMO 温室气体减排成本模型 GCF 绿色气候基金 GDP 国内生产总值 GEF 全球环境基金 GHG 温室气体 ha 公顷 HDD 供暖度日数 HFC 氢氟碳化物 (HFC) HPP水力发电厂 IAP 爱奥尼亚亚得里亚海管道 IEE 工业能源效率 INDC 国家自主贡献 IPA 加入前援助工具 IPPU 工业过程和产品使用 ITS 智能交通系统 LCDS 低碳发展战略 LNG 液化天然气 LPG 液化石油气 LULUCF 土地利用、土地利用变化和林业 (LULUCF) MMR 监测机制条例 MRVA 监测、报告、核查和认证 MVP 监测和核查计划
符号 上限-C 上限值是接触不应超过的极限值。 可吸入分数 STEL 短期接触极限:接触不应超过的极限值,与 15 分钟时间相关(除非另有规定)。 TWA 时间加权平均值(长期接触极限):与 8 小时参考期时间加权平均值相关测量或计算(除非另有规定)
简介: 2016 年,巴西南部地区的 2 月阿玛雷拉 (FA) 席尔维斯特雷。针对肾病 (DRC) 患者的个人免疫接种疫苗接种和安全保障,以确保患者在二月份的地方性生活中保持活力,不需全面了解。我们的目的是为了预防不良事件的发生,并为初级疫苗接种 17DD-YF 疫苗,并在 DRC 子宫颈治疗中接种疫苗。方法:对 223 个个体进行回顾性研究和多中心研究,以针对 FA 进行初步疫苗接种。临床特征、流行病学和疫苗不良事件 (EAV) 中的孔洞。在 35 次接种疫苗后,71 名 (32%) 的疫苗接种者使用了睾丸中和剂。结果:Não houve EAV 坟墓 em nenhum paciente。涉及 13 个个体 (5.8%) 的当地论坛,涉及 6 个 (2.7%) 地区的普遍性问题和 205 个 (91.9%) 的 EAV 相关问题。 Nenhuma 特征临床或流行病学 predisse 的 EAV ocorrência。 38% 的参与者都对临床和流行病学的特征和免疫原性有充分的了解。结论:我们对预防接种疫苗的研究是对 DRC 和 DRC 患者的耐受,但不能充分恢复免疫。未来的疫苗开发将集中于对细胞体液免疫的反应,并通过不同剂量的疫苗接种来进行体液免疫。
“ Cantidatus Phytoplasma Fraxini”的Ashy1菌株起源于伊萨卡(美国纽约,美国纽约),并于白灰(Fraxinus Americana),并被转移到Catharanthus Roseus(5)。使用Dneasy血液和组织试剂盒(Qiagen,Hilden,Germany)制备了由感染的玫瑰花芽芽孢杆菌和叶子材料制备的测序模板。使用SMRTBELL PREP KIT 3.0(美国加利福尼亚州PACBIO)的SMRTBELL PREP KIT 3.0(美国)而没有其他DNA片段化制备了用于单分子实时(SMRT)的高保真库。在Max Planck Genome-Centre(德国科隆)的续集IIE设备(PACBIO)上对片段文库进行了测序,其结合KIT 2.0(PACBIO)和续集II测序套件2.0(PACBIO)。通过使用BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)和一个数据核定的数据,通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。 使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。 实现了一个连续的圆形序列,具有67.17倍的覆盖率。 通过爆炸分析确认了> 10 kb的序列重叠。 随后,使用Artemis V18.2.0(8)手动删除序列重叠。 在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。 未发现质粒。通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。实现了一个连续的圆形序列,具有67.17倍的覆盖率。通过爆炸分析确认了> 10 kb的序列重叠。随后,使用Artemis V18.2.0(8)手动删除序列重叠。在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。未发现质粒。使用BUSCO的151个单拷贝直系同源物(94%)的比较支持了注释的完整性(10)。在染色体组装中未考虑的读数对额外的分类套筒进行了进一步的分类,并筛选了ASHY1的肉体外DNA。默认参数用于所有软件,除非另有说明。
抽象的气候变化可能会增加城市和Sylvatic Mosquito载体传播登革热和黄热病的风险。先前的研究主要集中在伊德斯伊德(Aedes Aegypti)和艾德斯(Aedes)白化病。但是,登革热和黄热病具有复杂的传输循环,涉及sylvatic载体。我们的目的是分析如何因气候变化而修改对城市和sylvatic媒介的分布。,我们预计,对于将来的情况,基线分配模型已经根据偏好性函数为这些向量发布,并映射了蚊子在近距离(2041–2060)和远处(2061-2080)将来可以增加,减少或保持稳定的区域。与基线模型相比,登革热和黄热病载体的有利区域在未来几乎没有差异,只有在区域尺度上可感知的变化。模型预测预测,登革热向量在西部和中非以及东南亚扩展,到达婆罗洲。黄热病媒介可以在西非和中非以及亚马逊群中蔓延。在欧洲的某些地方,模型表明重建AE。aegypti,而ae。白化病将继续寻找新的有利区域。结果强调了需要更多地关注向量AE的需求。vittatus,ae。luteocephalus和Ae。在撒哈拉以南非洲和中部非洲,尤其是喀麦隆,中非共和国和北部民主共和国的非洲非洲人;并强调了在经常被忽视的向量人群可能由于气候变化而繁衍的地区增强昆虫学监测的重要性。
登革热和黄热病具有复杂的周期,涉及城市和sylvatic蚊子以及非人类灵长类动物宿主。迄今为止,评估气候变化对这些疾病的影响的努力忽略了此类关键因素的结合。最近的研究仅考虑了城市媒介。这是第一项将它们与Syl Vatic载体一起包括在内的研究和灵长类动物的分布,以分析气候变化对这些疾病的影响。我们使用了基于机器学习算法rithm和模糊逻辑的先前发布的模型来确定相关传输剂的气候可爱性可能会发生变化的区域:1)由于环境和非人类灵长类动物分布而导致病毒循环的有利区域; 2)对城市和Sylvatic向量的可爱性。我们获得了两个未来时期和每种疾病的未来传播风险的预测,并实施了不确定性分析以测试预测可靠性。目前对这两种疾病有利的地区都可以保持气候方面的好处,而全球可爱性可能会增加7%的Yel Yel低烧,而登革热则增加了10%。将来可能会受到登革热的影响更大,包括西非,南亚,墨西哥湾,中美洲和亚马逊盆地。可能发生的登革热可能会进入欧洲,地中海盆地,英国和葡萄牙;并在亚洲进入中国北部。对于黄热病,气候在中部和东南非洲可能变得更加有利;印度;在南美北部和东南部,包括巴西,巴拉圭,玻利维亚,秘鲁,哥伦比亚和委内瑞拉。在巴西,南部,西部和东部的黄热病可能会增加。传播风险差异与向量分散一致的区域在预期差异直接归因于环境变化的区域中突出显示。两种情况都可能涉及不同的预防策略。
登革热和黄热病具有复杂的周期,涉及城市和sylvatic蚊子以及非人类灵长类动物宿主。迄今为止,评估气候变化对这些疾病的影响的努力忽略了此类关键因素的结合。最近的研究仅考虑了城市媒介。这是第一项将它们与Syl Vatic载体一起包括在内的研究和灵长类动物的分布,以分析气候变化对这些疾病的影响。我们使用了基于机器学习算法rithm和模糊逻辑的先前发布的模型来确定相关传输剂的气候可爱性可能会发生变化的区域:1)由于环境和非人类灵长类动物分布而导致病毒循环的有利区域; 2)对城市和Sylvatic向量的可爱性。我们获得了两个未来时期和每种疾病的未来传播风险的预测,并实施了不确定性分析以测试预测可靠性。目前对这两种疾病有利的地区都可以保持气候方面的好处,而全球可爱性可能会增加7%的Yel Yel低烧,而登革热则增加了10%。将来可能会受到登革热的影响更大,包括西非,南亚,墨西哥湾,中美洲和亚马逊盆地。可能发生的登革热可能会进入欧洲,地中海盆地,英国和葡萄牙;并在亚洲进入中国北部。对于黄热病,气候在中部和东南非洲可能变得更加有利;印度;在南美北部和东南部,包括巴西,巴拉圭,玻利维亚,秘鲁,哥伦比亚和委内瑞拉。在巴西,南部,西部和东部的黄热病可能会增加。传播风险差异与向量分散一致的区域在预期差异直接归因于环境变化的区域中突出显示。两种情况都可能涉及不同的预防策略。
黄热病由南美洲和非洲热带地区的蚊子传播。它可导致严重疾病和死亡。疫苗可预防黄热病。然而,一些受影响地区的人们没有接种疫苗,因为疫苗价格昂贵,而且不属于常规免疫接种。对他们来说,只有在疫情爆发时,紧急大规模疫苗接种运动才能获得疫苗。在这项研究中,我们探讨了乌干达弱势群体(65 岁以上的人和孕妇)对紧急黄热病大规模疫苗接种的当地看法,以更好地了解这些人如何获得疫苗信息,受影响社区会收到哪些信息,人们接种疫苗的动机是什么,以及哪些政治动机可能影响疫苗接种计划。尽管开展了广泛的宣传活动,但我们发现,到达社区的信息差异很大,人们严重依赖社区来源。此外,缺乏可靠信息和疫苗接种运动的政治化增加了人们对黄热病疫苗的不信任。我们还发现,只有理解疫苗接种的原则——预防疾病——才有可能获得知情同意。宣传活动应着重于广泛宣传免疫的重要性。参与组织宣传活动的人应意识到政治化对疫苗接种的潜在影响。
成年蚊子需要定期进食糖类食物,包括花蜜,才能在自然栖息地生存。雄性和雌性蚊子都利用一种叫做嗅觉受体 (OR) 的感觉蛋白来定位潜在的糖源,这种受体被植物挥发物激活,从而定位到花朵或蜜露。黄热病蚊子埃及伊蚊 (Linnaeus, 1762) 拥有一个庞大的嗅觉受体基因家族,其中许多基因家族可能能够检测花香。在这项研究中,我们使用一组与环境相关的植物来源的挥发性化学物质和异源表达系统,发现了埃及伊蚊一组嗅觉受体的配体-受体配对。我们的研究结果支持以下假设:这些气味介导蚊子中枢神经系统对花香的感觉反应,从而影响食欲或厌恶行为。此外,这些嗅觉受体在其他蚊子中保存良好,表明它们在不同物种中发挥着类似的功能。这些信息可用于评估蚊子的觅食行为并制定新的控制策略,特别是结合蚊子诱杀技术的策略。
2024 年 4 月 5 日 — 如果您想向我们提供反馈,请随时联系我或我的任何员工。谢谢。Miriam G Boyle。家庭项目总监。