DALLIAE项目旨在提出一种基于因果(贝叶斯)图[4,5]的通用方法,以检测光束线实验期间的异常及其可解释性。在因果图中,我们将特别关注定向的无环图(DAG)[1]。目标是引入层次因果图,并利用替代因果模型的概念来识别最相关的简单(单参数)和关节(Pa-Rameter组合)因果关系,这些因果链接表征了异常原因的原因。这种方法是必不可少的,这是由于仪器的多尺度性质和完整的梁线,这需要对不同尺度上的因果关系有细微的理解。我们还将专注于量化与已确定的因果链接相关的不确定性,以确保其相关性。由于各种工具,参数[1,3],在实验[2]中的修改,关节效应的组合数量以及数据中异常代表性不足,因此对因果关系的搜索更加困难。在实践中,此方法将限制主要X射线或激光器仪器的操作异常的影响,以了解光束特性与光束线光学元件的物理参数之间的联系。可以随着时间的推移观察到突然的或慢的异常/变化,例如聚焦畸变直接影响测量的质量和速度。尽管AI文献中有许多异常检测方法,但它们通常基于相关性,这在传达因果关系方面无效。因此,理解和征询这些故障的原因以及与最佳测量链性能的偏差对于快速响应和梁线或激光器操作的最大可靠性至关重要。因此,该项目的目的是根据因果图提出可解释的AI,以支持光束线操作员和科学家。任务是开发基于因果关系的模型来确定涉及异常的传感器参数。该方法将补充在合适的时间范围内进行纠正措施的诊断工具。因此,可以将工作分为以下任务:
fi g u r e 2研究中观察到的范围偏移概述。(a)研究中存在的原始存在和不存在数据以及存在估计值的后中值。原始观测图上的红点/正方形显示原始物种的检测,而黑点/正方形显示非探测。点代表ebird数据记录,正方形代表Bird Atlas Records。模型估计图中的颜色梯度图显示了该模型估计的存在的可能性,其中更多的黄色表示存在的概率更高。深蓝色和深紫色概述了与示例物种相对应的范围变化的数量。深蓝色:Kori Bustard(Ardeotis kori);深紫色:von der Decken的Hornbill(Tockus deckeni)。(b)在1980 - 1999年和2000- 2020年之间,单个物种范围移动的相对变化因子分为总范围变化,有意义的收缩分数和有意义的扩张得分。y轴上的值以线性尺度表示。1的相对变化因子对应于收缩或扩张(损失或获得等于机会区域的区域)的无意义变化,而总范围变化没有变化(1980- 1999年的范围等于2000 - 2020年的范围)。一个相对变化因子为2,对应于面积的两倍,而面积减半的系数为0.5。
引用 Gupta S、Modgil S、Lee C 等人 (2022) 未来就是昨天:利用人工智能驱动的面部识别来提升旅游业的价值。信息系统前沿。25:1179-1195。
本研究旨在利用“肺癌预测”数据集,分析三种分类模型(决策树分类器、支持向量机和朴素贝叶斯分类器)在预测肺癌方面的表现。所采用的性能评估指标包括准确率、精确率加权、召回率加权和 F1 加权。作为初步步骤,进行了探索性数据分析 (EDA) 和数据集预处理,包括特征选择、数据清理和数据转换。测试数据结果显示,决策树分类器和朴素贝叶斯分类器具有相似的性能,准确率、精确率、召回率和 F1 值都很高。同时,支持向量机也表现出了竞争力,尽管其精确率加权值略低。此外,使用箱线图进行了异常值分析,结果显示决策树分类器有 2 个异常值,而支持向量机有 4 个异常值,朴素贝叶斯没有异常值。总而言之,这三种分类模型在肺癌预测中都表现出良好的潜力。然而,选择最佳模型需要考虑应用的相关评估指标,并考虑到每个模型的局限性。需要进一步评估和深入分析,以确保模型在更准确和一致地预测肺癌病例方面的可靠性。
▶在一项重要的工作中,Del Negro和Schorfheide(2009)提出了DSGE-VAR程序,该程序将结构性宏观经济模型(DSGE模型)的先前信息纳入了VAR模型
2019 - 2022•特别任命的助理教授2019/05-2022/03东京理工学院计算学院数学与计算科学系。东京,日本研究的重点是量子相互作用系统的数学方面以及代表理论在密码学上的应用。由田中Keisuke领导的小组中下一代密码学(Cryptomath-Crest)项目的数学建模成员。积极参加了区块链和密码学研讨会。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年12月27日发布。 https://doi.org/10.1101/2024.12.26.630335 doi:Biorxiv Preprint
神经联想记忆是具有快速突触学习的单层感知器,通常存储神经活动模式对之间的离散关联。先前的研究分析了在独立模式成分和异质关联的朴素贝叶斯假设下的最佳网络,其任务是从输入到输出模式学习关联。在这里,我研究了用于自动关联的最优贝叶斯联想网络,其中输入层和输出层相同。特别是,我将性能与近似贝叶斯学习规则的不同变体(如 BCPNN(贝叶斯置信传播神经网络))进行比较,并尝试解释为什么有时次优学习规则比(理论上)最优模型实现更高的存储容量。事实证明,性能可能取决于违反“朴素贝叶斯”假设的输入成分的微妙依赖关系。这包括具有恒定数量的活动单元的模式、通过循环网络重复传播模式的迭代检索以及最可能单元的赢家通吃激活。如果所有学习规则都包含一种新的自适应机制来估计迭代检索步骤 (ANE) 中的噪声,则其性能可以显著提高。具有 ANE 的贝叶斯学习规则再次实现了整体最大存储容量。
a b s t r a c t天然聚合物的絮凝剂已成为废水处理替代Fe和基于Al的凝结剂和基于合成聚合物的絮凝剂的有前途的选择。这项研究引入了一种新型的絮凝剂,即STC-EGDMA-CTS,可以充当凝血剂和絮凝剂。获得了STC-EGDMA-CTS的特征,并使用UV可视分光光度计方法评估了其从废水中消除纺织染料的有效性。STC:CTS质量比从0.5 g-g -1的变化增加了Zeta电位值和STC-EGDMA-CTS的产量百分比从23.1到46.4 mV和15.64 mV和15.64%,分别为15.64%至59.93%。具体而言,分别由91.01、92.26、92.84和80.85%的STC:CTS质量比为0.5、1、2和4 G-G -1的STC EGDMA-CTS从废水中除去了纺织品染料。但是,STC:CTS质量比为8 g g -1的STC-EDGMA-CTS只能删除少于20%。去除染料的STC-EGDMA-CTS性能也受废水,STC-EGDMA-CTS剂量和沉积时间的初始pH的影响。表征和絮凝测试结果表明,STC-EGDMA-CTS絮凝的可能机制是电荷中和,吸附和聚合物间链接。