目的:本研究旨在研究认知情绪调节策略在儿童创伤,危险的酒精和药物使用以及性强迫之间的关系中的中介作用。方法:研究涉及来自安卡拉大学的303名参与者。数据收集包括儿童创伤问卷,性强迫量表,成瘾概况指数筛查量表和认知情绪调节问卷。使用相关性,简单的线性回归和模型4分析了变量之间的关系,以进行中介分析。结果:研究发现,儿童创伤可以显着预测危险的酒精和使用,性强迫以及适应不良的认知情绪调节策略。此外,发现适应不良的情绪调节策略会显着影响性强迫。该分析还表明,儿童创伤通过这些不良适应性策略影响性强迫,突出了认知情绪调节在成瘾行为发展中的关键作用。结论:儿童创伤和认知情绪调节策略是成瘾风险过程中的重要因素。这些结果表明,针对情绪调节的干预措施可以帮助解决与创伤和成瘾有关的适应不良行为,从而为研究人员和从业者提供宝贵的见解。关键字:性强迫,儿童创伤,情绪调节,危险的酒精使用
摘要:我们开发了一种基于帕尔帖的非低温冷镜湿度计 SKYDEW,用于测量从地面到平流层的水蒸气。进行了几次室内实验,以研究该仪器在不同条件下的特性和性能。维持镜子上冷凝水的反馈控制器的稳定性取决于控制器设置、冷凝水条件和环境空气中的霜点。通过显微镜观察冷凝水并在室内进行比例积分微分 (PID) 调节的结果用于确定控制器的 PID 参数,以便保留来自镜子的散射光信号和镜子温度的轻微振荡。这允许检测到湿度分布中的陡峭梯度,否则由于响应较慢而无法检测到。原始镜面温度的振荡通过选择霜层的平衡点的黄金点法进行平滑。我们进一步根据全球气候观测系统 (GCOS) 参考高空网络 (GRUAN) 的要求描述了 SKYDEW 测量数据处理和不确定性估计的细节。在从 − 95 到 40 °C 的整个温度范围内,镜面温度测量的校准不确定性小于 0.1 K。在
湿地中的抽象水文转移是全球重要的甲烷(CH 4)来源,是CH 4排放和碳气候反馈的关键限制。对水文驱动的氧(O 2)的变化如何影响微生物CH 4循环的有限理解使湿地CH 4排放不确定。瞬态o 2暴露在温带沼泽中的植物泥炭中显着刺激了缺氧的CH 4产生,通过富集多酚氧化剂和多糖降解剂,从而增强了底物在随后的缺氧条件下朝着甲烷生成的流动。评估土壤微生物组结构和功能的转移是否在湿地类型的跨类型中相似,我们在这里检查了不同湿地土壤对瞬时氧合的敏感性。在从矿物营养的芬中植入泥炭泥炭的浆液中,以及淡水沼泽和盐泥的沉积物,我们检查了微生物体的时间变化以及浆液的地球化学表征和孵化向前空间。氧合不影响微生物组的结构和富含矿物质的Fen-Origin泥炭和淡水沼泽土壤中的缺氧CH 4产生。与O 2刺激的CH 4产生相关的关键分类单元在膜中泥炭中非常罕见,在芬罗根泥炭中支持微生物组的结构,这是湿地对O 2位变化的主要决定因素。与淡水湿地实验相反,盐泥地球化学(尤其是pH值)和微生物组的结构持续且显着改变后氧合作用,尽管对温室气体的排放没有显着影响。简介这些不同的反应表明,湿地可能对2波动有差异。随着气候变化的变化,湿地中的o 2变异性更大,我们的结果为湿地弹性的机制提供了帮助,并将微生物组结构作为潜在的弹性生物标志物。
海马结构在空间认知和情景记忆中起着关键作用,而杏仁核对于适应性恐惧条件作用至关重要。我们通过整合“TM24Amygdala ver4”(基于“YM24Amygdala”)和“TN24HippocampalFormation”BRA 数据,开发了一种大脑参考架构 (BRA) 数据格式。此 BRA 数据通过纳入新的大脑信息流 (BIF) 来扩展以前的 BRA 模型,该信息流可以捕捉海马结构和杏仁核之间的连接。构建的 BIF 为定义与空间认知和恐惧条件作用相关的高阶功能提供了基础。这些改进加深了我们对连接这些区域及其相互关联的功能的解剖结构的理解。BRA 存储库提供了对这些数据的全面访问,支持进一步研究海马结构和杏仁核之间的功能和结构关系。这项工作不仅增进了我们对每个区域各自作用的理解,而且还深入了解了它们的相互作用如何塑造复杂的认知和情感过程。
从环境中的二氧化碳中再生氧气是未来用于太空的生命支持系统的基本技术构件。BIORAT1 B2 阶段项目包括开发机上演示器 (OBD) 的初步设计评审 (PDR) 级设计,该演示器将托管在国际空间站上的欧洲抽屉架 2 (EDR2) 设施中。OBD 的核心是一个光生物反应器 (PBR),其中充满了螺旋藻 (Limnospira indica PCC 8005),它通过光合作用将二氧化碳和光转化为氧气。液体回路 (LL) 将溶解在培养基液体中的氧气和二氧化碳在光生物反应器 (PBR) 和国际空间站舱环境空气之间输送。气体交换模块 (GEM) 能够进行氧气和二氧化碳的交换,将培养基液体与环境空气分离,同时将液体保持在 LL 内。该飞行硬件的设计由使用面包板模型 (BBM) 获得的测试结果支持。本文介绍了使用 BBM 进行的长期螺旋藻培养试验的结果,以验证 PBR 和 LL(包括 GEM)的长期功能。介绍了 PBR 性能以及与培养藻类生长和氧气产生模型的相关性。还介绍并讨论了未来的发展和预期结果和前景。
目标祖先:总计:PRS 结构:AFR:AMR:EAS:SAS:CT-SLEB 2 1 0 1 4 LDpred2 1 0 0 0 1 LDpred2(加权)5 2 1 1 9 PRS-CSx 48 21 30 23 122 S4-MulJ 2 36 28 33 99 XPASS 2 0 1 2 5 总计:60 60 60 60 240 219
在皮质区域内发现缺氧口袋已经改变了对脑氧动力学的理解,揭示了它们双重作用是神经元适应性的贡献者,也是对功能障碍的潜在前体。这些瞬时氧气占用的微环境在神经血管耦合,突触可塑性和血管生成中起着关键作用,这对于维持认知弹性和神经元健康至关重要。研究皮质区域内的低氧袋在老龄化的人群和具有神经退行性疾病的个体中尤其重要。同时研究强调了身体,社会和认知活动调节脑氧合的能力,提供自然,可及的干预措施以优化氧气输送和利用。这项研究综合了来自神经影像,行为科学和纵向研究的发现,以说明日常常规如何减轻缺氧引起的认知能力下降并促进弹性。通过整合百岁老人,适应低氧的物种和多模式干预研究的见解,该框架突出了基于生活方式的策略在解决脑氧气定义方面的变革潜力。提倡跨学科方法的发现,以开发针对公共卫生,康复和个性化认知护理的有针对性的干预措施。
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。