Terms of use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at https://harvardwiki.atlassian.net/wiki/external/NGY5NDE4ZjgzNTc5NDQzMGIzZWZhMGFlOWI2M2EwYTg
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
补充数据关于模型拟合图的解释的注释(补充图1-7):为清楚起见,以下模型拟合数字可视化二维表面的二维表面。在每个补充图1-7中,面板(a)是产量与温度的关系,当降水保持恒定时(以估计的最佳为单位)。同样,面板(b)代表当温度恒定时(以估计的最佳量)保持温度时产量与总年沉淀的关系。The amount of scatter in observed yields around the fitted curves in supplementary figures 1-7 is a consequence of (a) viewing the three-dimensional raw data in two dimensions, (b) differences in technological inputs in different regions where data come from, but which share similar climatic conditions, (c) change in technological input over time for the same region, and (d) unaccounted for variability (sources are discussed in the methods部分;有关模型拟合和变化源的进一步详细讨论,请参见附录I。
粮食不安全是非洲气候变化带来的最大风险之一,那里有90%至95%的非洲粮食生产是雨天,很大一部分人口已经面临慢性饥饿和营养不良。尽管有几项研究发现了在气候变化情景下未来农作物产量损失的有力证据,但农作物和地区之间存在广泛的差异以及大型建模不确定性。这种不足的很大一部分源于气候预测,因为气候模型可能在模拟未来的降水和温度变化方面有所不同,这可能导致未来的作物产生情况。这项工作研究了西非气候变化对西非玉米,小米和高粱作物产量的影响,使用耦合模型对比项目对比项目第五阶段(CMIP5)和新一代来自耦合模型模型库库对间项目的气候模型的预测(CMIP5)(CMIP6)(CMIP6)。我们使用模拟作物建模框架来模拟历史和未来的作物产量,并使用引导技术来评估CMIP5和CMIP6合奏之间作物生产力的预计变化。使用新一代气候模型CMIP6,我们发现CMIP5模拟所示的负作物产量预测大大降低,当大气CO 2浓度在作物模型中所考虑时,也大大增加了作物产量。这种结果突出了在评估该地区气候变化的影响以及最终用户预期适应策略的差异方面仍然存在的巨大不确定性。CMIP5和CMIP6模拟之间作物产量影响的这些差异主要是由于西非温度和沉淀的气候不同。到本世纪末,CMIP6预测在本世纪中叶和较小程度上都显着湿润和凉爽。
草豌豆(lathyrus sativus L.)由于其有利的农艺特征,包括一种强大的根系,它深入渗透到土壤中,及其针对各种生物和非生物胁迫的弹性,这是可持续农业的绝佳选择。在这项研究中,在“ Gachsaran”,“ Mehran”,“ Kuhdasht”和“ Shirvan-Chardavol”地点的“ Gachsaran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”的雨水基因型的干燥产量和种子产量连续三年连续三年评估。使用随机完整的块设计进行了实验现场试验,并将每个实验设置复制三次。描述性统计量显示出4.030(吨/ha)和1.530(吨/ha)的平均值,表型系数分别为54.77和61.56,用于干燥的产量和种子产量。地理,气候和缘变量对产量测量的投影描述了四个研究环境之间的显着差异。高程对Mehran位置的干物质和种子产量产生更大的影响。降雨和相对湿度的气候因素分别在“ Gachsaran”和“ Shirvan-Chardavol”中起着重要作用。对于种子产量,与温度相关的属性在“ Mehran”位置更为重要。观察到低宽义的遗传力,基因型 - 环境相互作用的R 2显示了GEI的干燥产量(0.126)和种子产量(0.223)。基于脉冲的稳定性指数分别显示G10和G13是种子产量和干燥物产量的优质基因型。AMMI1和AMMI2都可以识别出其他基因型的不稳定基因型,并且AMMI都将基因型G10和G3识别为高产物且稳定的基因型。使用GGE Biplot鉴定出三个和两个大环境,以进行干燥的产量和种子产量。对于被识别的巨型环境,G1,G13和G2,以及种子收益的大型环境,可以引入G10和G15。“ Mehran”和“ Gachsaran”从研究的位置出来,考虑到干燥的产量和种子产量,并且为了进一步的GE相互作用研究,最好在这些位置建立适应性试验。该研究得出结论,考虑到环境因素的影响,为了促进雨水供应区域的可持续农业,培养已鉴定的草豌豆基因型的培养具有希望。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
生成人工智能(AI)为肽设计提供了强大的途径,但是由于庞大的序列空间,复杂的结构 - 活性关系以及平衡抗菌效力和低毒性的需求,此过程仍然具有挑战性。传统方法通常依赖于试验筛选,并且无法有效浏览潜在序列的巨大多样性。在这里,我们介绍了AMP-Diffusion,这是一种使用蛋白质语言模型的嵌入在抗菌肽(AMP)序列上微调的潜在潜扩散模型。通过系统地探索序列空间,AMP扩散可以快速发现有希望的抗生素候选物。我们生成了50,000个候选序列,随后使用我们的APEX预测模型对其进行过滤和排名。从这些过程中,合成了46位顶级候选人并通过实验验证。所得的AMP扩散肽表现出广泛的抗菌活性,靶向临床相关的病原体(包括多药抗性菌株),而人类细胞分析中的细胞毒性较低。机械研究表明,通过膜通透性和去极化进行细菌杀死,肽显示出良好的物理化学特征。在感染的临床前小鼠模型中,铅肽有效地减轻了细菌负担,表现出与多粘蛋白B和Levofloxacin相当的功效,没有可检测到的不良影响。这项研究强调了AMP扩散是设计新型抗生素和生物活性肽的强大生成平台的潜力,提供了一种有希望的策略来解决抗菌耐药性升级的挑战。
“目前,我们可以根据水果数量和增长率来预测树的产量,”她说。“但这还不够好。我们正在根据树上的芽数进行预测,以帮助指导修剪。芽在花朵之前很好地出现,因此它为农民提供了更多时间采取适当的行动 - 即需要多少修剪才能优化产量。,但这非常困难。我们继续以计算机视觉和机器学习模型为基础,以扩大我们的预测能力。Caain的贡献使我们能够雇用更多的人来构建更多数据集,这反过来又使我们能够在树木休眠时检测到相关因素。反过来,这将使我们能够预先预测一棵树的农作物负荷,以使果园经理可以修剪休眠的分支,以使每棵树的最佳农作物负载,从而使其更健康。”
背景:湿地排水已成为北美草原坑洼地区越来越重要的保护问题。几十年来,对一年生作物生产的经济激励推动了湿地排水,而湿地的去除对关键的湿地生态系统服务产生了不利影响,如野生动物栖息地和碳封存。过去研究模拟农民排干湿地的决定,通常假设排干的湿地将产生与田地高地相似的产量。目标:我们的目标是评估湿地及其缓冲区对草原坑洼地区作物产量、农场财务绩效和湿地排水激励措施的影响。方法:我们结合加拿大萨斯喀彻温省黑土和深棕壤带 36 块田地的精确产量数据和详细的湿地测绘数据,以估计湿地及其缓冲区对作物产量的农学影响。然后,我们将这些产量效应纳入具有三种湿地排水情景的农场核算模型,以估算研究区域湿地排水每年每英亩耕地的净收益,并将这些结果与没有湿地产量效应的估计结果进行比较。结果:我们发现湿地盆地的产量相对低于田地的平均产量,并且与作物类型、土壤区域和年降水量之间存在很大差异。湿地排水可以缓解