3 伦敦都市大学通信技术中心,伦敦 N7 8DB,英国;b.virdee@londonmet.ac.uk、i.garciazuazola@londonmet.ac.uk、a.krasniqi@londonmet.ac.uk,4 马德里卡洛斯三世大学信号理论与通信系,28911 Leganés,马德里,西班牙;mohammad.alibakhshikenari@uc3m.es 5 伊拉克 Al-Turath 大学医疗器械技术工程系;amna.shibib@ieee.org 6 土耳其伊斯坦布尔 34220 Esenler 伊尔迪兹技术大学电子与通信工程系;nturker@yildiz.edu.tr 7 沙特阿拉伯利雅得国王沙特大学工程学院,POBox 800,利雅得 11421, drskhan@ksu.edu.sa 8 英国爱丁堡龙比亚大学计算工程与建筑环境学院; n.ojaroudiparchin@napier.ac.uk 9 巴勒莫大学工程系,viale delle Scienze BLDG 9,巴勒莫,IT 90128,西西里岛,意大利; patrizia.livreri@unipa.it 10 上法兰西理工大学,微电子和纳米技术研究所 (IEMN) CNRS UMR 8520,ISEN,里尔中央大学,里尔大学,59313 Valenciennes,法国; iyad.dayoub@uphf.fr 11 法国上法兰西学院,F-59313 瓦朗谢讷,法国 12 恩纳科雷大学工程与建筑学院,94100 恩纳,意大利;giovanni.pau@unikore.it 13 魁北克大学国立科学研究院 (INRS),蒙特利尔,魁北克,H5A 1K6,加拿大;sonia.aissa@inrs.ca 14 罗马“Tor Vergata”大学电子工程系,Via del Politecnico 1,00133 罗马,意大利;limiti@ing.uniroma2.it 15 阿拉伯科学、技术和海运学院电子与通信工程系,开罗 11865,埃及;mohamed.fathy@aast.edu
1国际应用和理论研究中心(IATRC),巴格达10001,伊拉克2号伊拉克2卡洛斯三世大学,莱加尼斯大学,28911西班牙6号马德里,6电子与传播工程系,耶尔迪兹技术大学,埃森勒,34220,土耳其伊斯坦布尔7,土耳其7工程学院,国王萨特大学,萨特大学,里亚德,里亚德,里亚德,11421,11421,SAUDI ARABIA 8 saudi Arabia Arabia Engineering and Ednap eyh Nemhn Nevern Endering Essering and Edtin,Edten,Edtin,EDTIN,EDTEN, Edinburgh, U.K. 9 Department of Engineering, University of Palermo, Palermo, 90128 Sicily, Italy 10 Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, ISEN, Centrale Lille, Université Polytechnique Hauts-de-France, University of Lille, 59313 Valenciennes,法国11 Insa Hauts-de-France,59313法国瓦伦西恩斯12号工程与建筑学院,恩纳市科尔大学,94100年,意大利ENNA,INTAL NANTATE DE lA RECHERCHE SCOCKICICIQIE(INRS),INRS) 00133意大利罗马15电子与通信工程部,阿拉伯科学,技术与海事运输学院,开罗11865,埃及1国际应用和理论研究中心(IATRC),巴格达10001,伊拉克2号伊拉克2卡洛斯三世大学,莱加尼斯大学,28911西班牙6号马德里,6电子与传播工程系,耶尔迪兹技术大学,埃森勒,34220,土耳其伊斯坦布尔7,土耳其7工程学院,国王萨特大学,萨特大学,里亚德,里亚德,里亚德,11421,11421,SAUDI ARABIA 8 saudi Arabia Arabia Engineering and Ednap eyh Nemhn Nevern Endering Essering and Edtin,Edten,Edtin,EDTIN,EDTEN, Edinburgh, U.K. 9 Department of Engineering, University of Palermo, Palermo, 90128 Sicily, Italy 10 Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, ISEN, Centrale Lille, Université Polytechnique Hauts-de-France, University of Lille, 59313 Valenciennes,法国11 Insa Hauts-de-France,59313法国瓦伦西恩斯12号工程与建筑学院,恩纳市科尔大学,94100年,意大利ENNA,INTAL NANTATE DE lA RECHERCHE SCOCKICICIQIE(INRS),INRS) 00133意大利罗马15电子与通信工程部,阿拉伯科学,技术与海事运输学院,开罗11865,埃及
DNA是一种用于在生物体中携带遗传信息的核酸。这是一个9双链分子,该分子是由两个可能的氮基碱(denine&10 g uanine)和嘧啶(C ytosine&t hymine)和两个化学上极末端形成的,即11 5'和3'。watson-crick互补(WCC)的关系,其特征在于12 a c = t,g c = c,反之亦然,用于结合DNA的碱基。在1994年,Adleman [2] 13讨论了使用DNA分子的汉密尔顿路径问题。通过在DNA分子中编码一个小图,在所有操作中使用标准方案(例如WCC关系)进行了15个问题,可以解决此(NP完整)14问题。由于大规模的并行性,16个DNA计算成为研究人员中有强大的工具,可以解决计算17个困难问题。此外,对合成的DNA和RNA 18分子进行了实验,以控制其组合约束,例如恒定的GC-含量 - 含量和19次锤距。在有限领域的20个线性代码已经探索了将近三十年,但是在Hammons 22等人的出色工作之后,这个21个研究领域经历了惊人的速度。[21]当他们在z 4上建立线性代码与其他非23个线性二进制代码之间的关系时。之后,许多作者考虑了具有环24结构的字母,并通过特定的灰色图在有限的字段上找到了许多良好的线性代码。在25个线性代码类别中,由于其26个理论丰富性和实际实现,循环代码是关键和研究最多的代码。Liu等。 锤子37Liu等。锤子37最近,许多作者[4,5,14,20] 27使用环上的环状代码构建了DNA代码。,例如,Yildiz和Siap [20]和28 Bayram等。 [4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。 在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。 [13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。 同时,Gursoy等人。 [10]使用偏斜的环状代码研究了可逆的DNA代码32。 Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively. 35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。,例如,Yildiz和Siap [20]和28 Bayram等。[4]分别探索了环F 2 [V] /⟨v 4 - 1⟩和F 4 + V F 4,V 2 = V,29的DNA代码。在2019年,Mostafanasab和Darani [14]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA 30代码的结构。[13]在f 4 [u] /⟨u 3⟩上的31奇数长度的循环DNA代码上工作。同时,Gursoy等人。[10]使用偏斜的环状代码研究了可逆的DNA代码32。Recently, Cengellenmis et al [ 7 ] and Yildilz [ 20 ] studied DNA 33 codes from skew cyclic codes over the rings F 2 [ u , v , w ] , where u 2 = v 2 + v = w 2 + w = 34 uv + vu = uw + wu = vw + wv = 0 and F 2 [ u ] / ( u 4 − 1 ) , respectively.35由上述作品激励,我们考虑了36个有限链环r = f 4 [v] /⟨v 3⟩构造任意长度的DNA代码的循环和偏斜循环代码。
本文受益于 OECD.AI 人工智能事件专家组相关人员的口头和书面贡献,包括 Ahmet Yildiz(土耳其共和国工业和技术部);Andrejs Vasiljevs(Tilde);Annalore Verhagen(OECD);Aurelie Jacquet(澳大利亚标准);Barry O'Brien(IBM);Carlos Ignacio Gutierrez(未来生命研究所);Carlos Muñoz Ferrandis(BigScience);Catelijne Muller(ALLAI);Coran Darling(DLA Piper);Craig Shank(独立专家);Daniel Schwabe(里约热内卢天主教大学);Elham Tabassi(NIST);Eva Thelisson(人工智能透明度研究所);Florian Ostmann(艾伦图灵研究所);Heather Frase(CSET);Ilya Meyzin(邓白氏); Irina Orssich(欧盟委员会);Jana Novohradska(斯洛伐克共和国);Jessica Cussins(加州大学伯克利分校);John McCarthy(奥雅纳公司);Judith Peterka(德国);Leonidas Aristodemou(经合组织);Mark Latonero(白宫科技政策办公室);Marko Grobelnik(约瑟夫·斯蒂芬研究所);Mohammed Motiwala(美国);Nicolas Miailhe(未来社会);Nicolas Moës(未来社会);Nozha Boujemaa(宜家);Pam Dixon(世界隐私论坛);Peter Addo(法国开发署);Peter Cihon(GitHub);Philip Dawson(Armila);Prateek Sibal(联合国教科文组织);Raja Chatila(IEEE);Rayid Ghani(卡内基梅隆大学);Rebecca Anselmetti(英国);Sean McGregor(负责任的人工智能协作组织);塞巴斯蒂安·哈伦斯莱本 (CEN-CENELEC); Tatjana Evas(欧盟委员会);蒂亚戈·吉马良斯·莫赖斯(巴西);蒂尔·克莱因(AppliedAI); Yolanda Lannquist(未来社会);和 Yordanka Ivanova(欧盟委员会)。
教授UMUT TOPAL 个人信息办公室电话:+90 462 377 8426 电子邮件:utopal@ktu.edu.tr 网址:https://avesis.ktu.edu.tr//utopal 地址:卡拉德尼兹技术大学,技术学院,特拉布宗土木工程系国际研究人员 ID ORCID:0000-0003-0298-3795 Publons / Web Of Science ResearcherID:AAW-5374-2020 Yoksis 研究人员 ID:133814 教育信息 博士学位,卡拉德尼兹技术大学,-,土木工程,土耳其 2003 - 2009 研究生,卡拉德尼兹技术大学,-,土木工程,土耳其 2000 - 2003 本科,耶尔德尼兹技术大学,土木工程学院,土木工程,土耳其 1994 - 1998 研究领域固体力学、土木工程、机械、结构力学、建筑动力学、建筑稳定性、工程与技术 学术头衔/任务 副教授,黑海技术大学,-,土木工程,2011 - 继续 讲师 博士,黑海技术大学,-,土木工程,2009 - 2011 讲师,黑海技术大学,-,土木工程,2006 - 2009 研究助理,黑海技术大学,-,土木工程,2000 - 2003 学术和管理经验 黑海技术大学,2011 - 继续 发表的期刊文章被 SCI、SSCI 和 AHCI 索引 I. 一种用于加筋压电层压复合材料板屈曲优化的新方法 Goodarzimehr V.,TOPAL U.,Fotovat MB JOURNAL OF COMPOSITE MATERIALS,第 58 卷,第 28 期,第 2975-2991 页,2024 (SCI 扩展)II.使用 bonobo 优化算法对不同非均匀边缘载荷下的带椭圆孔层压复合材料板的屈曲载荷进行优化 Shaterzadeh A.、TOPAL U.、Hadad V.、Das AK 先进材料与结构力学,2024(SCI 扩展版)
用于测定抗逆转录病毒药物20030154的分光光度法方法20030154İpekoguz用于分析抗心律失常药物色谱方法色谱方法20030134 Ertem证人fostemsavir含量含有含有Fostemsavir 20030162 ezer pictrictical System libobirtin biobobelirtirin litrululululululululululirtirin forsemsavir量2003016666666666666666rukiyeöztürk药物分析分子抑制了基于聚合物的基于聚合物的电化学传感器20030181BüşraTekinTekin Micro -right技术在药物分析中使用的技术用途 electrochemical methods of the 20030094 Beyza Nur Çammelik Authorities Analytic Methods Analysis 20030161 Kadriye İrem Özer Spectrophotometric methods quantity determinations 20030099 Ayla Nur Dalkıran Quantity Determination by chemometric methods 20030069 Güzin Sude Aradan Supercritic Fluid Chromatography and Applications 20030147 Habibe Kurt分析化学协会。MehmetGökhançağlayanGümüş银弗洛米特钴确定纳米动物20030200ülkünisayılmaz分析化学合作伙伴。Sevinçkurbanoğlu3D医学诊断应用中的印刷电化学传感器20030353旋律PAK碳糕点电极在药物分析中使用20030090VEDATCOşkunyürek电化学传感器,用于确定Aflatoksin 20030160 Zeynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jaterynep jateryrema(vasabi; brassicaceae)植物,食品和医疗价值20030322 LeylaKhalılovacydonia cydonia oblonga mill。(ayva)植物食品和医疗价值20030184 Ahmet Kerem当前对TürkNutrasötics的看法:未来17030220 DIDEM BAHAR KARAKAYA DIOTOMIC MICRALGAS药物和生物医学应用的关键概念和期望。 Divi Divi Divi Divi)。在Artocarpus Heterophylus 20030164ÖzgeOztekinLam方面的重要性。(Moraceae)工厂的医学重要性20030137ElifTürküKayaconfolvulus L.药物植物学的重要性20030188AycaünaUnal常规药物植物学的植物的重要性,含有20030113 Ece Ece Ece ece ece ece eraslan tamarindus indaimental in Injeyneme olaea olea opimate opimateimentimentimention。 Zafer Bayram Sweatters Effects of 20030167 Feyza Özyıldırım Salıtır Characteristics and Duties 20030136 Nesibe Rana Rana Benefits and Lack of Vitamin A Family Fataman Acids 20030116 20030183 Ceren Tuğrul Mitochondria Transplantation: Basic Principles and Applications 20030126 Beyza Nur Gülhan Mitochondri Dysfunction and Cancer Relationship 20030142 Elif Ayca Elif Ayca Medical Applications of Mitochondria Transplantation: Potential Use in Disease Treatments 20030141 ELİF Su HUF GLOSEMENT EFFECTS (Applied) 20030205 Mustafa Zengin Biochemical Control of Appetal 20030101 Zehra Delialioğlu Hormones Related to Calcium Metabolism 20030195 Emine与过氧化物有关的aynuryıldız相关疾病20030045 Aytac Nur novruz生物技术处理产品和应用20030288 20030168Hilalözyürek药物nilüfernilüferyükselYükselnanoparticar nanoparticar nanoparticar Pharmaceary Carrier Systems and Prininization <2003030303030330332 SETU>
DNA是一种用于在生物体中携带遗传信息的核酸。这是一种由两个可能的氮基形成的双链分子,即抑制碱(腺嘌呤和鸟嘌呤)和嘧啶(胞嘧啶 - 胸腺素)和两个化学上极性末端,即5'和3'。watson -Crick互补(WCC)的关系,其特征为C = T,G C = C,反之亦然,用于结合DNA的碱基。在1994年,Adleman [1]讨论了使用DNA分子的汉密尔顿路径问题。通过在DNA分子中编码一个小图来解决此(NP完整)问题,其中使用标准方案(例如WCC关系)进行了所有操作。由于大规模的并行性,DNA计算成为研究人员中有强大的工具,以解决计算上的困难问题。此外,对合成的DNA和RNA分子进行了实验,以控制其组合约束,例如恒定的GC - 含量和锤击距离。线性代码已探索了近三十年,但是该研究领域在Hammons等人的出色工作之后经历了惊人的速度。[2]当他们在z 4上建立线性代码与其他非线性二进制代码之间的关系时。之后,许多作者[3-6]都考虑了具有环结构的字母,并通过特定的灰色图发现了许多有限端的线性代码。在线性代码类别中,由于其理论丰富性和实际实现,环状代码是关键和研究最多的代码。最近,许多作者[7 - 13]使用环上的环状代码构建了DNA代码。例如,Bayram等。[7]和Yildiz和Siap [13]分别探索了环F 4 + V F 4,V 2 = V和F 2 [V] /⟨V 4-1⟩的DNA代码。在2019年,Mostafanasab和Darani [12]讨论了链环F 2 + U F 2 + U 2 F 2上的环状DNA代码的结构。Liu等。 [14]在f 4 [u] /⟨u 3⟩上的奇数长度的循环DNA代码上工作。 另一方面,Boucher等人。 [15]引入了偏斜的循环代码,并发现了许多新的线性代码。 此外,在[16,17]中,已经建立了这些代码的更多特性。 最近,Gursoy等。 [18]使用偏斜的循环代码研究了可逆的DNA代码。 后来,Cengellenmis等。 [19]从环上的偏斜循环代码f 2 [u,v,w]研究了DNA代码,其中u 2 = v 2 + v = w 2 + w =Liu等。[14]在f 4 [u] /⟨u 3⟩上的奇数长度的循环DNA代码上工作。另一方面,Boucher等人。[15]引入了偏斜的循环代码,并发现了许多新的线性代码。此外,在[16,17]中,已经建立了这些代码的更多特性。最近,Gursoy等。[18]使用偏斜的循环代码研究了可逆的DNA代码。后来,Cengellenmis等。[19]从环上的偏斜循环代码f 2 [u,v,w]研究了DNA代码,其中u 2 = v 2 + v = w 2 + w =
1. 土耳其伊斯坦布尔耶尔德兹技术大学科学与艺术学院化学系、生物化学系。2. 土耳其伊斯坦布尔贝兹米亚莱姆瓦基夫大学药学院药物生物技术系。3. 土耳其伊斯坦布尔贝兹米亚莱姆瓦基夫大学药学院药物生物技术系。4. 美国伊利诺伊州芝加哥伊利诺伊大学芝加哥分校生物制药科学系。收到日期,2020 年 2 月 1 日;修订日期,2020 年 4 月 1 日;接受日期,2020 年 4 月 27 日;发布日期,2020 年 4 月 30 日。摘要 - 传统的全身化疗涉及药物分子在体内的广泛分布,从而对健康组织造成毒副作用并限制药物作用部位所需的治疗剂量。为了减少副作用并提高药物疗效,最近对化疗的研究集中在药物靶向上。靶向治疗可以通过多种机制实现,包括; 1) 使用针对疾病生物标志物的抗体作为药物,2) 使用抗体(或肽)作为与药物分子结合的靶向剂,3) 使用纳米载体将药物分子递送到目标组织,纳米载体表面可以附着或不附着靶向剂。第三种方法涉及纳米药物,它可以通过被动(由于脉管系统渗漏而渗出到患病部位)和主动(靶向剂与疾病生物标志物的特定相互作用)靶向机制靶向患病组织。在本综述中,我们将介绍使用纳米药物载体制备的被动靶向纳米药物。理想情况下,载体颗粒应具有合适的尺寸(1-100nm),足够稳定以防止药物在循环过程中泄漏,并且安全不会对健康组织造成任何损害。对所有这些特性的竞争产生了许多不同类型的材料,用作纳米药物输送系统。简要回顾最常用的药物载体后,我们将讨论靶向纳米药物的临床应用,包括其药代动力学和药效学特性,以及这些特性与给药后在血液循环中提供游离药物的传统制剂有何不同。 _______________________________________________________________________________________ 引言 在全身药物治疗中,药物通过血液分布到全身,只有少量的给药药物能够到达患病组织。根据药物的性质,体内的药物分子可能进入身体的不同部位,在健康组织中解离,与邻近细胞相互作用或被代谢并排出体外。无法到达目标的药物分子形成毒副作用是很常见的。给予身体的药物的治疗剂量会根据这些毒性作用进行调整。然而,药物的预期药理作用取决于患病部位的药物浓度,在某些情况下,完全治疗所需的剂量并不容易给药。例如,在癌症治疗中,预期的副作用减轻后,需要重新给药。小剂量重复给药会在癌细胞中产生对药物的免疫力,导致癌细胞比正常细胞增殖更快。为了解决这一严重的耐药性问题,近年来已经开发出针对性的治疗方法(1)。
为什么加拿大制造的Laribee吉他好? Laribee吉他于1968年在加拿大多伦多开始制造,并于1977年搬到加拿大环太平洋沿岸的不列颠哥伦比亚省维多利亚,创造了我们独特的吉他。声音使用来自高森林的优质云杉和雪松。 当它于 20 世纪 70 年代末传入日本时,其高品质令人惊叹,并获得了想要像 Martin 和 Gibson 那样细腻声音的用户的支持。精美的镶嵌作品是Larrivee吉他的特色之一,是由Gene Larrivee的妻子Wendy创作的。今天十年级的情况仍然如此。 20 世纪 70 年代末,包括他的妻子 Wendy 在内的 8 名工匠每月生产约 30 瓶葡萄酒。 这一时期的吉他据说是Laribee的黄金时代,抵达日本的少数10级吉他售价超过了Martin的D-45。我想可以说,这为Somogi这样的手工吉他今天被日本乐迷所接受奠定了基础。 除了产品的质量和声音的质量之外,还应该考虑民族主义的方面。虽然他们的销量不如Martin和Gibson,但他们很早就在努力表达自己的加拿大特色,并且一直讲究在加拿大生产产品。他们融入了当时不符合美国时尚的东西,例如“木质装订”、“制作精美的玫瑰花饰”、“透明护板”和“具有欧洲文艺复兴风格的镶嵌设计”。这种叛逆精神吸引了那些厌倦了美国文化消极方面(例如越南战争和全球化)的人们。有一个轶事,在吉他发展的早期,一位美国自由主义音乐家在听到有关Laribee吉他的谣言后,在多伦多的街道上徘徊,寻找一把Laribee吉他。 2001 年 9 月,Larrivee 搬迁至加利福尼亚州的一家新工厂,以进一步扩张。由于美国市场是他们最大的客户,该公司自然希望降低出口成本。然而,这让粉丝们非常失望,他们认为这是一把值得骄傲的加拿大吉他,而不是前面提到的美国吉他,这一事实是有意义的。日本粉丝也是如此。如果您想要一把来自美国西海岸的吉他,泰勒吉他就足够了。未能立即提高加州工厂的质量也增加了现有粉丝的失望。 目前,创始人吉恩·拉里维(Gene Larrivee)、他的妻子温迪(Wendy)、次子马修(Matthew)和女儿克里斯汀(Christine)在加利福尼亚州的一家工厂工作。长子吉恩·拉里维 (Gene Larrivee Jr.) 负责加拿大温哥华的工厂。独自留在加拿大的他对于在工厂度过的时光有何感想? 我无从了解他个人的挣扎,但他回应了我的评论“加拿大制造的10级吉他很好”,并为《LAST GUITAR》的开场制作了一把吉他,我不禁认为有。这不仅仅是简单地接受请求。熟练的工匠在一条单独的生产线上工作。 是的,我想他想证明这一点。自豪地在加拿大制造。第一批已经到了。使用温迪的镶嵌物,图案为留在加拿大的阿拉丁和神灯精灵,以及 AAA 级核心。
使用上述协议。瑞典印度尼西亚村庄的肖像小企业和企业家,也称为晶体管 mos。随着用户输入的字符逐个字符地出现在所有用户屏幕上,brown 和 woolley 消息发布了基于网络的 talkomatic 版本,通过超链接和 URL 链接。最后,他们确定的所有标准成为了新协议开发的先驱,该协议现在被称为 tcpip 传输控制协议互联网协议,通过超链接和 url 连接。Knnen sich auch die gebhren ndern,dass 文章 vor ort abgeholt werden knnen。