● 到 2050 年,欧洲的累计电池需求量将比 2022 年高出 100-200 倍,相当于高达 2000 万吨的电池金属(而 2022 年的石油消耗量为 1.7 亿吨油当量)● 即使在一切如常的情况下,欧洲的需求也远远低于全球储量,相当于已知全球锂和镍储量的 11%、钴储量的 10% 和锰储量的 1%。● 使用更小的电池、减少私家车行驶里程和采用创新的化学物质(如钠离子)将使中心(或“加速”)情景下所需的电池金属量与一切如常相比减少三分之一以上。在最激进的情景下,这一数字会下降一半。● 更小的电池是带来最大影响的单一因素,或者在所有情景下原材料最多可减少四分之一。● 在供应受限的世界中,使用更小的电池和汽车不仅是环境要求,也是合理的经济和产业政策。 ● 在欧洲、国家和地方层面采取强有力的政策是关键,包括全欧盟范围内转向更小、更实惠、资源更丰富的轻型电动汽车的战略。
抽象锂离子电池(LIB)在包括运输,电子和太阳能在内的众多主要行业中起着至关重要的作用。虽然使用量和多氟烷基(PFAS)添加剂可以提高性能和寿命,但通过电池制造和回收操作将这些添加剂的偶然释放到环境中可能会对环境,人类健康和财务成果产生负面影响。当前的电池制造和回收废物处理方法并非旨在消除PFA,从而强调了对高级解决方案的需求。超临界水氧化(SCWO)已被证明可以在各种复杂的废物流中破坏PFA,从而使其成为有前途的解决方案。374Water的AirScWo技术用于处理含有HQ-115的解决方案,该解决方案是锂离子电池中商业使用的添加剂。HQ-115,也称为BIS(三氟甲磺酰基)酰亚胺(LITFSI),是一种双氟烷基磺酰亚胺(BIS-FASIS)的一种类型秒。这些结果表明,374Water的AirScWo技术可用于快速破坏基于PFA的LIB添加剂,并可能提高一旦商业化的LIB制造和回收利用的可持续性。
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
1 美国东北大学网络科学研究所和物理系,马萨诸塞州波士顿 02115;2 美国哈佛医学院布莱根妇女医院医学系钱宁网络医学分部,马萨诸塞州波士顿 02115;3 美国哈佛大学生物医学信息学系,马萨诸塞州波士顿 02115;4 美国哈佛大学哈佛数据科学计划,马萨诸塞州剑桥 02138。5 Scipher Medicine,221 Crescent St, Suite 103A,马萨诸塞州沃尔瑟姆 02453;6 美国东北大学物理系,马萨诸塞州波士顿 02115;7 萨班哲大学工程与自然科学学院,土耳其伊斯坦布尔 34956;8 美国马萨诸塞州波士顿大学 NEIDL 微生物学系;9 美国马萨诸塞州波士顿哈佛医学院布莱根妇女医院医学系10 匈牙利布达佩斯 1051,中欧大学网络与数据科学系。 * 这些作者的贡献相同
摘要 — 本文提出了一种基于电网内现行功率流条件的节点聚类新方法。为此,首先,将网络的有功功率流状态建模为有向无环图。该有向图明确表示功率流向何处,这有助于监控和分析系统漏洞。有向无环图表示还可以轻松识别仅提供或吸收有功功率的总线:这些总线分别是纯源节点和纯汇节点。对系统中的每个节点应用迭代路径查找程序,以枚举供电的源节点和其将功率转发到的下游汇节点。然后应用新颖的聚类算法将共享同一组可达源节点和汇节点的节点分组在一起。首先提出这种新颖的聚类方法作为一种工具,通过更好地总结大型电网中的总功率流配置来提高控制室操作员的态势感知能力。所提出的方法应用于两个样本电网,并阐述了与河流系统的类比,将支流、分流和中央主流等概念应用于电网。
co 1将许多熟悉的系统视为向量空间,并使用矢量空间工具(例如基础和维度)与它们一起运行。co 2了解线性变换并使用其矩阵表示来操纵它们。CO 3 Understand the concept of real and complex inner product spaces and their applications in constructing approximations and orthogonal projections CO 4 Compute eigen values and eigen vectors and use them to diagonalize matrices and simplify representation of linear transformations CO 5 Apply the tools of vector spaces to decompose complex matrices into simpler components, find least square approximations, solution of systems of differential equations etc.
摘要:随着人工智能和通信技术的进步,神经科学领域的发展每天都在给我们带来惊喜,我们现在已经更接近自 20 世纪以来一直追求的目标:将大脑机器本身变成一台计算机。因此,从帕金森症到多发性硬化症等多种疾病的治疗将可能成为可能,并且交流的物理界限也可能被消除。脑机接口技术在带来潜在好处的同时,也带来了需要从法律角度探讨的风险。本文通过重新审视随着脑机接口技术的发展而开始成为法律概念的神经数据(脑机接口过程中获得的数据)方面的隐私,提出了在“直接、连续、流畅和不可阻挡”的数据流时代有关脑机接口数据的各种问题。本研究的主要目的是主张从脑机接口技术的发展阶段开始制定尊重人类自主权和隐私的法律框架,该技术将得到新通信技术的支持,其应用领域将不断扩大,旨在为在脑机接口和隐私权交叉领域进行法律研究提供基础资源。
胡一鹏 1,2,4 约瑟夫·雅各布 1,3 杰弗里·JM·帕克 1,5,6 大卫·J·霍克斯 1,2,4 约翰·R·赫斯特 3 丹奈尔·斯托亚诺夫 1,2,5 1 伦敦大学学院医学图像计算中心,2 威康/EPSRC 介入和外科科学中心,3 伦敦大学学院呼吸科,4 医学物理和生物医学工程系,5 计算机科学系,伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 6 Bioxydyn Limited,Pencroft Way,曼彻斯特,M15 6SZ,英国 通信:yipeng.hu@ucl.ac.uk 由严重急性呼吸系统综合症冠状病毒 2 引起的 COVID-19 大流行,发生在一个被基于大数据、计算能力和神经网络的人工智能(AI)迅速改变的世界。近年来,这些网络的目光越来越多地转向医疗保健领域的应用。COVID-19 是一种全球性疾病,对健康和经济造成破坏,或许不可避免地会吸引全球学术界和工业界的计算机科学家的关注和资源。AI 支持应对疫情的潜力已在广泛的临床和社会挑战 [1] 中提出,包括疾病预测、监测和抗病毒药物发现。随着疫情对世界人民、工业和经济的影响不断扩大,这种情况可能会持续下去,但对当前疫情的一个令人惊讶的观察是,迄今为止,AI 在 COVID-19 管理中的影响有限。本通讯重点探讨了在前线医疗服务中未能成功采用为 COVID-19 诊断和预后开发的 AI 模型的潜在原因。我们强调了模型在疫情的不同阶段必须解决的不断变化的临床需求,并解释了将模型转化为反映当地医疗环境的重要性。我们认为,基础研究和应用研究对于加速人工智能模型的潜力都至关重要,在迅速发展的疫情期间尤其如此。 从这个角度看,对 COVID-19 的反应,或许可以让我们一窥全球科学界应如何应对未来的疾病爆发,以更有效地应对。
计算机科学 (CS) 对日常生活的影响无可否认,这促使人们做出巨大努力,让每个人都能接受计算机科学教育。随着 CS 教育的进步,人们逐渐认识到计算不仅仅是编码,而应该注重解决问题的技能。科学界这一进步的一个里程碑是回顾“计算思维 (CT)”一词的观点,并主张它包括每个人都应该学习的通用技能,而不仅仅是 CS 专业人士 [Wing 2006]。一些流行且成功的教授/学习 CS 和培养 CT 技能的方法包括可视化编程活动 [Hu et al. 2021];游戏化编程环境/编程游戏 [Lindberg et al. 2019]。它们通常与创客文化相一致,将学习者视为创造者,而不仅仅是消费者 [Martin 2015]。
塞拉俱乐部委托对清洁能源组合进行独立评估,该组合可以在独立和白崖发电站退役后满足 AECC 的可靠性和能源需求。该分析使用 GenX,这是麻省理工学院和普林斯顿大学的研究人员开发的开源电力系统评估模型,用于评估能源系统如何整合可再生能源、存储和其他技术。该模型可用于评估可再生能源和存储的组合如何满足电力公司的每小时需求。在本例中,该模型用于评估 AECC 的系统。我们的评估保守地假设 AECC 没有机会与 MISO 和 SPP 中的区域电力和容量市场互动,尽管它定期这样做。我们还将 AECC 的 MISO 和 SPP 部门之间的互动限制在仅 275 兆瓦的传输容量,反映了 AECC 对 SPP 需求的预测,该需求与 MISO“伪绑定”。这些保守假设的价值在于,该模型被迫构建替代投资组合,就好像 AECC 完全独立于市场,其系统中的 SPP 和 MISO 部分之间的互动有限,而这种立场通常需要更高的成本。我们的理由是,如果我们能够证明 AECC 可以构建一个独立于市场的具有成本效益的投资组合,那么任何共享的市场资源只会使投资组合更便宜。