对高度多样化的植物分类单元的保护和研究可能是一个巨大的挑战,因为具有潜在复杂关系的不可管理的物种通常会导致物种鉴定困难。cyrtandra举例说明了这些挑战。CA缺乏身份资源。170种伯恩斯·西拉德拉(Bornean Cyrtandra)的物种使许多标本未识别,从而减慢了该地区的研究工作。本项目通过使用在线生物多样性数据管理平台XPER3(https://app.xper.fr/)来描述为高度多样化的分类单元创建识别资源的工作流程来解决这一问题。该密钥现已发布并可以在线自由访问。在线多功能分类键通过将可访问的用户友好平台与动态分类研究工具相结合,为生物多样性研究提供了有希望的工具,使其特别适合于解决高度多样化的分类学组。
研究文章:方法/新工具| Novel Tools and Methods Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test https://doi.org/10.1523/ENEURO.0382-24.2025 Received: 30 August 2024 Revised: 10 January 2025 Accepted: 13 January 2025 Copyright © 2025 Rajput et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
摘要:在真核生物中,Cyclin依赖性激酶(CDKS)是DNA复制和有丝分裂的必需的,并且在整个细胞周期中,依次激活了不同的CDK-循环蛋白复合物。普遍认为,特定的复合物需要遍历G1中细胞周期的承诺,并分别促进S期和有丝分裂。因此,根据一个流行的模型,几十年来一直占据了领域的流行模型,在细胞周期的每个阶段,针对不同底物的独特CDK – cyclin compleces固有的特定座位生成了事件的正确顺序和时间。但是,编码细胞周期蛋白和CDK的基因敲除的结果不支持此模型。通过许多最近的工作验证的替代性“定量”模型表明,CDK活性的总体水平(具有相反的磷酸酶输入)决定了S期和有丝分裂的时间和顺序。我们通过建议将细胞周期分为离散阶段(G0,G1,S,G2和M)的细分被过时且有问题,从而进一步采用了该模型。相反,我们恢复了细胞周期的“连续性”模型,并提出与定量模型的结合更好地定义了理解细胞周期控制的概念框架。
Emily H Emmott,UCL人类学,伦敦大学学院,伦敦塔维顿街14号,英国,WC1H 0BW,emily.emmott@ucl.ac.ac.uk
背景:由于技术的进步,包括人工智能,物联网和云服务,电子病历(EMR)发生了重大变化。医疗保健系统中日益增长的复杂性需要增强的过程重新设计和系统监控方法。机器人过程自动化(RPA)通过模仿最终用户交互,提供了一种以用户为中心的方法来监视系统复杂性,从而在系统性能和监视中提供了潜在的改进。目的:本研究旨在探索RPA在医院环境中监视EMR系统复杂性中的应用,重点是RPA执行端到端性能监控的能力,这密切反映了实时用户体验。方法:该研究是在首尔国立大学邦丹医院使用混合方法进行的。它包括编程的RPA机器人的迭代开发和集成,以模拟和监视与医院EMR系统的典型用户互动。来自RPA过程输出的定量数据以及与系统工程师和经理的访谈的定性见解,用于评估RPA在系统监控中的有效性。结果:RPA机器人有效地识别并报告了系统效率低下和失败,在最终用户体验和工程评估之间提供了桥梁。机器人在系统更新或与外部服务的交互后立即检测延迟和错误特别有用。在3年的时间里,RPA监视强调了用户报告的体验与传统工程指标之间的差异,并且机器人经常识别出从标准组件级别监视中显而易见的关键系统问题。结论:RPA通过提供反映真正最终用户体验的见解来增强系统监视,这些见解通常被传统的监视方法忽略。这项研究证实了RPA在复杂的医疗保健系统中充当全面监控工具的潜力,这表明RPA可以通过提供对系统性能和用户满意度的更准确和及时的反思,从而为EMR系统的维护和改进做出重大贡献。
摘要本研究旨在识别和分析精益产品开发中有效指数的重要性 - 性能矩阵,重点是汽车行业工业4.0时代的循环经济。该研究的统计人口包括伊朗工业,矿山和贸易部,伊朗·科德罗工业集团(IKCO)和塞帕集团的经理和专家,此外还包括相关领域的学者。该研究采用了混合方法研究方法。在定性部分中,采用了判断性抽样来选择17名专家,并通过主题分析进行了深入的访谈以进行数据收集。在定量阶段,通过结构化问卷从384名参与者收集数据,然后进行主题分析。数据分析由两个步骤组成。最初,通过主题分析来描述尺寸和组件。随后,根据重要性 - 性能矩阵分析(IPMA)方法对每个组件的重要性和性能进行评估。结果表明汽车行业的主要优势,例如,使用高级技术和精益设计,位于矩阵的第一个象限中,需要保存并进一步增强。在第二季度,包括减少废物和供应链优化在内的因素被确定为需要有针对性的关注和战略重点。第三季度没有任何变量,表明汽车行业的适当集中在关键因素上。需要立即采取行动,在第四季度确定了诸如升级生产成本和制裁之类的挑战。关键字:精益制造,循环经济,行业4.0,重要性 - 性能矩阵
严重获得性脑损伤(SABI)的患者由于共存的认知运动残疾而表现出很高的临床复杂性,并且对日常生活活动的专业护理和依赖性很高(1,2)。此外,这些患者患临床并发症的风险很高,这可能导致急性护理病房重新院长的发生率很高(3),并使急性后的康复治疗变得困难(1)。Some patients with sABI can evolve from the comatose state to the prolonged Disorders of Consciousness (pDoC), which include patients in Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS; i.e., awake patients, but no evidence of conscious behaviors) ( 4 ), and patients in Minimally Conscious State (MCS; i.e., patients with minimal but reproducible intentional behaviors) ( 5 )。对于患有SABI和PDOC的患者,最常见的临床并发症包括癫痫,呼吸道和生殖器尿液感染,Bedsores,Hypertonia,Heterotopic Ossifienation,Deep静脉血栓形成,心脏心脏和内分泌 - 代谢功能障碍(6-9)。这些临床并发症中的某些并发症会对生存率(例如,代谢性疾病),意识恢复(即癫痫)(6,10)和运动障碍的恢复(11)产生负面影响。基于这一证据,美国学院神经病学指南强烈建议识别临床并发症,以适当治疗它们并防止其恶化(12)。
在这项工作中,我们提出了一种新的方法,用于使用AutoCododer(AE)(AE)(一种未加权的机器学习技术,具有最少的先验知识)来识别一维量子多体系统中的量子相变。AES的训练是通过在整个驱动参数的整个范围内通过精确的对角线化(ED)获得的减少密度矩阵(RDM)数据进行的,因此不需要对相图的事先了解。使用这种方法,我们通过跟踪AE的重建损失的变化,成功地检测了具有多种类型的多种相变的广泛模型中的相变。AE的学习表示表示,以表征不同量子相的物理现象。我们的方法论展示了一种新的方法,可以使用最少的知识,少量所需数据研究量子相变,并产生量子状态的压缩代表。
当前涉及教育和技术的研究领域是如何教年轻的学生研究机器人技术等技术或工程领域。这项研究可能成为他们的主要问题,并使他们感到沮丧。因此,这项研究也需要高成本和更长的时间,以及专业的老师[1]。随着科学和技术的最新进展,发展了学习过程的方式。仍然很难弄清楚教师应用的异常方法和策略。这些主要问题使年轻学生感到沮丧和注意力不集中[2]。教师和研究人员对一些创新且高效的学习策略进行了误解。技术辅助学习方法简化了老师的准备。然后,机器人技术是增强学生和老师能力的重要工具。几十年前,机器人术语意味着将来要使用的一种设备,包括在电视中通常看到和想象的技术和其他文物。一般而言,教育机器人技术可以被归类为机器人技术,为主要演员/主题和共同主题。机器人技术作为主要演员意味着使用机器人技术教学的任务,尽管辅助主题是指机器人技术的教学。因此,教育机器人技术可以定义为机器人技术和所有相关问题的整合到特定课程中。如表1所示,机器人教育与教育之间的差异。
在2021年,美国有182,520例脑和中枢神经系统(CNS)癌症和2024年的25,400例新病例。通过磁共振成像(MRI)的早期检测可显着改善患者的预后。 这项研究微调一个残留的神经网络50版2(RESNET50V2),一种卷积神经网络(CNN),具有挤压和兴奋(SE)注意机制,以增强基于MRI的肿瘤分类,而不是基本的RESNET50V2模型。 通过合并SE块,该模型改善了特征优先级,有效区分神经胶质瘤(n = 901),脑膜瘤(n = 913),垂体肿瘤(n = 844)和无肿瘤(n = 438)。 经过公开可用的Kaggle数据集(n = 3,096)的培训,提议的模型达到了98.4%的分类精度,并且在接收器操作特性曲线(AUC)下的面积为0.999,其表现优于基本型号的92.6%精度,并且0.987 AUC。 在脑膜瘤(P = 0.013)和垂体肿瘤(p = 0.015)的分类精度中观察到在统计学上显着改善,这突出了SE模型分化肿瘤类型的卓越能力。 SE注意机制通过解决特征提取限制和医学成像中的长距离依赖性来提高诊断精度。 然而,仍然存在诸如数据集大小约束,过度拟合风险和潜在表示偏见之类的挑战。 未来的研究将着重于扩展数据集多样性,探索视觉变压器(VIT)以改善功能提取,并采用生成性对抗网络(GAN)进行数据增强。通过磁共振成像(MRI)的早期检测可显着改善患者的预后。这项研究微调一个残留的神经网络50版2(RESNET50V2),一种卷积神经网络(CNN),具有挤压和兴奋(SE)注意机制,以增强基于MRI的肿瘤分类,而不是基本的RESNET50V2模型。通过合并SE块,该模型改善了特征优先级,有效区分神经胶质瘤(n = 901),脑膜瘤(n = 913),垂体肿瘤(n = 844)和无肿瘤(n = 438)。经过公开可用的Kaggle数据集(n = 3,096)的培训,提议的模型达到了98.4%的分类精度,并且在接收器操作特性曲线(AUC)下的面积为0.999,其表现优于基本型号的92.6%精度,并且0.987 AUC。在统计学上显着改善,这突出了SE模型分化肿瘤类型的卓越能力。SE注意机制通过解决特征提取限制和医学成像中的长距离依赖性来提高诊断精度。然而,仍然存在诸如数据集大小约束,过度拟合风险和潜在表示偏见之类的挑战。未来的研究将着重于扩展数据集多样性,探索视觉变压器(VIT)以改善功能提取,并采用生成性对抗网络(GAN)进行数据增强。