阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
作为重要的金属氧化物,由于其在催化和光催化中具有许多有希望的特性,因此对二氧化钛二氧化钛进行了广泛研究。解剖酶TiO 2晶体的特性在很大程度上取决于暴露的外表面。已经做出了许多努力,以提高养殖化合物2的{001}方面的高反应方面的百分比,以增强其催化特性。本评论报告了设计和制造高反应性方面的最新进展通过各种策略,包括传统的蒸汽相外延过程,水热/溶液热方法,非溶液性酗酒方法和高温气体相反应。此外,重点介绍(001)表面,综述还涵盖了解剖酶TiO 2晶体各种高反应性方面的理论模拟的进步。最后,我们提供了一个摘要和一些观点,以了解这一新兴领域的未来研究的挑战和新方向。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
Reijsbergen,Daniel,Shyam Shiam,BarnabéMonnot,Stefanos Leonardos,苏格兰海峡和Piliouras的Georgies。“交易信仰:以太坊的EIP-1iety-blockchain(区块链),2021。
1 Syncline Energy Pty Ltd (Syncline) 是一家位于维多利亚州的领先可再生能源项目开发公司。 2 Syncline 开发了 MREH 项目,这是一个 2.4 GWh 电池储能系统 (BESS),将连接到墨尔本郊外的 AusNet 500kV 网络。该项目已获得债务、承购和股权担保。它已与 AEMO 达成发电机性能标准,并已获得所有规划、土地和环境批准。第一阶段是对澳大利亚能源转型的约 8 亿美元投资。 3 MREH 的连接资产包括对声明共享网络 (DSN) 的增强,该网络既有“可竞争”的组件,也有“不可竞争”的组件。 4 2022 年,Syncline 将 MREH 的一部分出售给全球绿色能源基础设施基金 Equis。Equis 将在最终通知继续进行时拥有 MREH 100% 的股份。 5 在维多利亚州,Syncline 还开发了价值 1.8 亿美元的 Bannerton 太阳能园区,该园区于 2019 年投入使用,为维多利亚州的有轨电车网络提供绿色能源。 6 Bannerton 的电网连接需要对 AusNet 的 Wemen 终点站进行实质性扩建。 7 Syncline 由 Phil Galloway 所有,他在能源领域拥有 30 多年的经验。这包括在必和必拓、埃索和 CS First Boston 担任全球高管职位。与此提交相关的是,在埃索,Phil 是一名负责东澳大利亚的能源市场分析师。在 CS First Boston,他是将 SEC 私有化的团队的一员,包括准备第一个 ACCC 合并授权以进行拆分。在必和必拓,他领导了公司电力资产的出售,并且是一家主要电力消费者、总部位于伦敦的必和必拓铝业公司的董事。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.