C.半固体培养基 将琼脂的量减少到0.2-0.5%可使培养基变成半固体。这种培养基相当柔软,可用于展示细菌的运动性(U型管) 某些运输培养基 D.其他凝固剂 除琼脂外,蛋黄和血清也可用于凝固培养基。 2.根据营养成分分类 培养基可分为简单、复杂和合成(或定义)。 1-简单培养基,如蛋白胨水、营养琼脂可以支持大多数非苛刻细菌。那些能够以最低要求生长的细菌被称为非苛刻细菌。 2-复杂培养基,那些需要额外营养的细菌被称为苛刻细菌,例如血琼脂,其成分的确切成分很难估计。 3.根据功能用途或应用分类 1.基础培养基基本上是支持大多数非苛刻细菌的简单培养基。蛋白胨水、营养肉汤和营养琼脂被视为基础培养基 2. 富集培养基用于培养营养要求高(要求苛刻)的细菌 在基础培养基中添加血液、血清、蛋黄等形式的额外营养物质,使其成为富集培养基。血琼脂、巧克力琼脂。 3. 选择性和富集培养基旨在抑制不需要的共生菌或污染菌,并有助于从细菌混合物中恢复病原体。选择性培养基是基于琼脂的,而用于恢复金黄色葡萄球菌的甘露醇盐琼脂和盐乳琼脂含有 10% NaCl 4. 鉴别/指示培养基 鉴别培养基或指示培养基将一种微生物类型与在同一培养基上生长的另一种微生物类型区分开来。这种培养基利用微生物在特定营养物或指示剂(如中性红、酚红或亚甲蓝)存在下生长的生化特性,以直观地指示微生物的定义特性。这种方法用于麦康凯琼脂,麦康凯琼脂是最常用的培养基。制备和储存培养基时必须小心调整培养基的 pH 值,然后进行高压灭菌。所使用的各种 pH 指示剂包括酚红、中性红、大多数培养基都通过高压灭菌进行灭菌。某些含有热不稳定成分(如葡萄糖、抗生素、尿素、血清、血液)的培养基不能进行高压灭菌。这些成分需要过滤,可以在培养基高压灭菌后单独添加。培养基可以在冰箱中 4-5oC 下保存 1-2 周。某些装在带螺旋盖的瓶子或试管中或用棉塞塞住的液体培养基可以在室温下保存数周
多倍体细胞含有 2 个以上的基因组拷贝,存在于许多植物和动物组织中。存在不同类型的多倍体,其中基因组局限于 1 个细胞核(单核化)或 2 个或更多细胞核(多核化)。尽管多倍体广泛存在,但不同类型多倍体的功能意义在很大程度上尚不清楚。在这里,我们通过特异性抑制双核化而不改变基因组倍性来评估秀丽隐杆线虫肠道细胞中多核化的功能。通过单线虫 RNA 测序,我们发现双核化对于组织特异性基因表达很重要,最显著的是对于在从幼虫发育到成年期的过渡期间显示快速上调的基因。受调控的基因包括卵黄蛋白,它编码促进营养物质向生殖系运输的卵黄蛋白。我们发现单核肠细胞中卵黄蛋白表达减少会导致后代发育迟缓和适应性下降。总之,我们的结果表明,双核化促进了发育过程中肠道特异性基因表达的快速上调,与基因组倍性无关,强调了空间基因组组织对多倍体细胞功能的重要性。
在六年级的科学中,我们很高兴能继续与密歇根DNR的鲑鱼在第三年的课堂计划中合作。 目前,我们的奇努克鲑鱼处于Alevin阶段,依靠其蛋黄囊在生长时营养。 这些年轻的鲑鱼提供了一个独特的机会,可以研究其引入本地生态系统的引入可能会影响水生生物多样性。 今年春天晚些时候,我们将把鲑鱼释放到Sevey排水沟中,继续他们在野外的旅程。 该项目直接与我们的铁路项目联系在一起,在那里我们研究了奇努克鲑鱼对Sevey排水中水生大型无脊椎动物的丰度和多样性的影响。 大型无脊椎动物(例如短水,五月氟,caddisflies,水生甲虫等)对于流生态系统至关重要。 它们是水质和溪流新陈代谢的指标,是鲑鱼和Smolt阶段的主要食物来源。 我们今年的驾驶问题是基于上一年的研究:奇努克鲑鱼作为新捕食者的引入如何影响大型无脊椎动物社区和塞维排水的整体生态健康? 通过这项调查,学生正在探索关键的生态概念,包括:在六年级的科学中,我们很高兴能继续与密歇根DNR的鲑鱼在第三年的课堂计划中合作。目前,我们的奇努克鲑鱼处于Alevin阶段,依靠其蛋黄囊在生长时营养。这些年轻的鲑鱼提供了一个独特的机会,可以研究其引入本地生态系统的引入可能会影响水生生物多样性。今年春天晚些时候,我们将把鲑鱼释放到Sevey排水沟中,继续他们在野外的旅程。该项目直接与我们的铁路项目联系在一起,在那里我们研究了奇努克鲑鱼对Sevey排水中水生大型无脊椎动物的丰度和多样性的影响。大型无脊椎动物(例如短水,五月氟,caddisflies,水生甲虫等)对于流生态系统至关重要。它们是水质和溪流新陈代谢的指标,是鲑鱼和Smolt阶段的主要食物来源。我们今年的驾驶问题是基于上一年的研究:奇努克鲑鱼作为新捕食者的引入如何影响大型无脊椎动物社区和塞维排水的整体生态健康?通过这项调查,学生正在探索关键的生态概念,包括:
结果:当您尝试旋转一个未煮过的鸡蛋时,其液体蛋黄和白色将四处移动,使鸡蛋摇摆而不是自旋。硬煮的鸡蛋将平稳旋转,因为内部是坚固的,因此更稳定。在四个洗净的蛋壳一半的破损边缘上,不可擦伤的蛋壳包裹胶带包裹胶带。修剪边缘,使鸡蛋坐平。将蛋壳放置,以便它们将支撑一些书的四个角落。仔细地平衡书籍的顶部。在蛋壳开始破裂之前,您可以堆叠几本书?结果:由于壳的弯曲形状,蛋壳可以支持书籍的重量。这种形状有助于将书籍的重量分配到整个外壳上,而不仅仅是最后。鸡蛋和苏打水在装满可乐的玻璃杯中浸泡30分钟至1小时。发生了什么?尝试用牙刷用牙膏刷鸡蛋。发生了什么?鸡蛋和牙齿之间有任何相似之处吗?结果:鸡蛋用可乐染色,并被牙膏去除。
1882 年,埃利·梅契尼科夫 (Élie Metchnikoff) 在海星幼虫中发现了巨噬细胞,这种细胞通过吞噬外来物质来破坏外来物质。他将这一过程描述为吞噬作用 (Underhill 等人,2016)。后续研究表明,巨噬细胞在整个后生动物中都得到了保留,在调节发育、组织修复、体内平衡和先天免疫方面表现出额外的功能 (Lazarov 等人,2023;Park 等人,2022)。在三胚层动物中,吞噬细胞由于开放的循环系统而穿过体腔并清除细胞碎片或病原体 (Maheshwari,2022;Banerjee 等人,2019)。在哺乳动物中,常驻组织巨噬细胞在早期胚胎阶段从卵黄囊和红细胞-髓系前体细胞发育而来,并在整个生命过程中具有自我更新能力。单核细胞衍生的巨噬细胞也与快速补充的组织有关,例如肠道(Lazarov 等人,2023;Lee & Ginhoux,2022;Park 等人,2022)。在从单细胞生物进化到高度复杂的脊椎动物的过程中,巨噬细胞的作用和吞噬过程在很大程度上保持了下来(Yutin 等人,2009)。然而,吞噬巨噬细胞分化的潜在机制仍不清楚。
特异性和评论同型蛋白质Nanog是通过抑制细胞分化因子维持胚胎干细胞(ESC)多能性至关重要的转录因子。在人类中,纳米基因编码这种蛋白质。Nanog与其他因素(例如Oct-4和Sox2)一起运行,以定义ESC身份。它在癌症干细胞中也高度表达,这表明作为癌基因在促进癌症发展中的潜在作用。纳米水平升高与癌症患者的预后不良有关。nanog在原位(CIS),胚胎癌和seminomas中表现出强烈而特异性的表达,但在Teratomas和蛋黄囊肿瘤中不存在。研究表明,包括Oct4,Nanog,Stellar和GDF3在内的人类胚胎干细胞相关的基因在Seminomas和乳腺癌中表达。nanog的阳性与高级卵巢浆液性癌显着相关,但在良性,边缘或低度浆液病变中未观察到。一项研究强调了纳米的细胞穿梭及其在宫颈癌进展过程中增加的基质存在。此外,Nanog的过表达与肿瘤分化,淋巴结转移和肿瘤大小等因素有关,研究表明其对肺癌中降低总生存率(OS)和无疾病生存(DFS)的预测价值。
小胶质细胞是中枢神经系统(CNS)的常驻免疫细胞。小胶质细胞起源于早期胚胎阶段的蛋黄囊中的红细胞祖细胞,然后这些祖细胞在发育过程中通过广泛的迁移和增殖来殖民中枢神经系统。小胶质细胞占成年大脑中所有细胞的10%,而胚胎大脑中这些细胞的比例仅为0.5-1.0%。尽管如此,发育中的大脑中的小胶质细胞通过扩展芬膜虫在结构内广泛移动其细胞体。因此,它们可以与周围细胞相互作用,例如神经谱系细胞和血管结构的细胞。这种活跃的小胶质细胞运动性表明胚胎小胶质细胞在大脑发育中起关键作用。的确,最近越来越多的证据揭示了胚胎阶段的小胶质细胞功能。例如,小胶质细胞控制神经干细胞的分化,调节神经祖细胞的种群大小并调节神经元的定位和功能。此外,小胶质细胞不仅在神经谱系细胞上发挥作用,而且在血管上(例如支持血管形成和完整性)上发挥作用。本综述总结了对发展中大脑中小胶质细胞动力学和多面功能的最新进展,特别关注胚胎阶段,并讨论了其行为的基本分子机制。
特异性和评论同型蛋白质Nanog是通过抑制细胞分化因子维持胚胎干细胞(ESC)多能性至关重要的转录因子。在人类中,纳米基因编码这种蛋白质。Nanog与其他因素(例如Oct-4和Sox2)一起运行,以定义ESC身份。它在癌症干细胞中也高度表达,这表明作为癌基因在促进癌症发展中的潜在作用。纳米水平升高与癌症患者的预后不良有关。nanog在原位(CIS),胚胎癌和seminomas中表现出强烈而特异性的表达,但在Teratomas和蛋黄囊肿瘤中不存在。研究表明,包括Oct4,Nanog,Stellar和GDF3在内的人类胚胎干细胞相关的基因在Seminomas和乳腺癌中表达。nanog的阳性与高级卵巢浆液性癌显着相关,但在良性,边缘或低度浆液病变中未观察到。一项研究强调了纳米的细胞穿梭及其在宫颈癌进展过程中增加的基质存在。此外,Nanog的过表达与肿瘤分化,淋巴结转移和肿瘤大小等因素有关,研究表明其对肺癌中降低总生存率(OS)和无疾病生存(DFS)的预测价值。
肿瘤抗原•肿瘤抗原是被认为在癌细胞和胎儿而不是成人组织中以高水平表达的蛋白质的名称。•但是,他们在成年人中的表达不限于肿瘤,而是在各种炎症条件下的组织和循环中增加,即使在正常成人组织中,抗原也少量发现。•CEA(CD66)是一种高度糖基化的膜蛋白,可作为细胞间粘附分子。高CEA表达通常仅限于在妊娠前两个三体中肠道,胰腺和肝脏中的细胞。•在结肠,胰腺,胃和乳腺癌的许多癌中,其表达升高,这些患者的表达也增加了。•但是,在非肿瘤性疾病的情况下,例如肠道或肝脏的慢性炎症状况,血清CEA可以升高,因此临床实用性有限。•AFP是一种循环糖蛋白,通常由蛋黄和肝脏在胎儿生命中分泌并分泌。•胎儿血清浓度可以高达2至3 mg/ml,但成年人的血清浓度很低。•肝细胞癌,生殖细胞肿瘤以及偶尔胃癌和胰腺癌的患者可以升高AFP的血清水平。•血清AFP水平升高有时用作治疗后晚期肝或生殖细胞肿瘤或这些肿瘤复发的指标。
Atezolizumab(抗 PD-L1)加 Bevacizumab(抗 VEGF)以及 tremelimumab(抗 CTLA4)加 durvalumab(抗 PD1)联合治疗 HCC 展示了免疫疗法在 HCC 治疗中的前景 (3, 4) 。α -胎蛋白 (AFP) 是胚胎发育过程中由卵黄囊和胎儿肝脏产生的主要血浆蛋白。AFP 水平在出生后迅速下降,并在大多数 HCC 肿瘤中重新表达,可作为临床诊断生物标志物 (5) 。AFP 在成人中的作用尚不清楚;尽管如此,它是 HCC 免疫治疗一个有希望的潜在靶点 (6–9) 。Butterfield 等人首次确定了 4 个 HLA-A*0201 限制性 AFP 表位,并开发了基于 AFP 肽的 HCC 疫苗 (10, 11) 。这项开创性的工作表明,在胸腺的负选择过程中,识别 AFP 的 T 细胞并未完全从 T 细胞库中删除。由于检测到适度的 AFP 特异性 CD8 + T 细胞反应,这些发现为基于 AFP 的 HCC 免疫疗法确立了潜在目标。进行了 I/II 期临床试验,以评估这 4 种 AFP 肽脉冲到 HCC 患者的树突状细胞 (DC) 上的免疫效率。接种疫苗后,检测到至少一种肽的中等 AFP 特异性 T 细胞反应 (6)。然而,