1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);zhangyongkui@ime.ac.cn(YZ);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);liyangyang@ime.ac.cn(YL);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY); maxueli@ime.ac.cn (XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL); wangwenwu@ime.ac.cn (WW); wangguilei@ime.ac.cn (GW); 电话:+ 86-010-8299-5508 (WW)
DOPZ gYZ[ 6LMLUJL 6VTLZ[PJ 3I\ZL C[YH[LN`& JV]LYPUN [OL UL_[ g]L `LHYZ& ^PSS SVVR [V JVVYKPUH[L LiVY[Z HPTLK H[ YLK\JPUN [OL YH[L HUK PTWHJ[ 并提高家庭暴力的安全性和 ^LSSILPUN VM HSS [OVZL HiLJ[LK( GL ^PSS KL]LSVW 支持文化并在适当的情况下发挥我们的作用以支持刑事司法系统,同时也提供旨在改造肇事者和永久终止虐待的途径 ILOH]PV\YZ( GL ^PSS ^VYR HJYVZZ VYNHUPZH[PVUHS HUK 部门边界,以确保随时可用的服务的质量和可访问性,以便任何遇到家庭暴力受害者无论身在何处,担任服务人员、家庭成员或文职雇员,都可以立即获得帮助和支持。我们将采取更多措施,以 IYLHR KV^U [OL PU]PZPISL ^HSS [OH[ KL[LYZ ]PJ[PTZ MYVT HZRPUN MVY OLSW( GL T\Z[ OH]L Z`Z[LTZ PU 地方,使我们能够尽快做出回应和提供支持 HZ P[ PZ ULLKLK HUK [V TH_PT\T LiLJ[(
16。SkórkowskaA,Maciejska A,Pomierny B等。成年产前和成年苯甲酮-3真皮暴露对调节雌性大鼠神经退行性过程,血荷激素水平和血液学参数的因素的影响。Neurotox res。2020; 37(3):683-701。doi:10.1007/s12640-020-00163-7 17。Heurung AR,Raju SI,Warshaw EM。苯苯酮。皮肤接触,特应占用药物。2014; 25(1):3-10。 doi:10.1097/ der.00000000000025 18。 div> Haylett AK,Chiang YZ,Nie Z,Ling TC,Rhodes LE。 防晒光影测试:一系列157个儿童。 br j dermatol。 2014; 171(2):370-375。 doi:10.1111/bjd.13003 19. 制革商PR。 防晒产品配方。 皮肤菌诊所。 2006; 24(1):53-62。 doi:10.1016/j.det.2005.09.002 20。 Sasseville D.烷基糖苷:2017年“年度过敏原”。 皮肤接触,特应占用药物。 2017; 28(4):296。 doi:10.1097/ der.0000000000000290 21。 div> Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。 过敏原2014; 25(1):3-10。doi:10.1097/ der.00000000000025 18。 div>Haylett AK,Chiang YZ,Nie Z,Ling TC,Rhodes LE。防晒光影测试:一系列157个儿童。br j dermatol。2014; 171(2):370-375。 doi:10.1111/bjd.13003 19. 制革商PR。 防晒产品配方。 皮肤菌诊所。 2006; 24(1):53-62。 doi:10.1016/j.det.2005.09.002 20。 Sasseville D.烷基糖苷:2017年“年度过敏原”。 皮肤接触,特应占用药物。 2017; 28(4):296。 doi:10.1097/ der.0000000000000290 21。 div> Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。 过敏原2014; 171(2):370-375。doi:10.1111/bjd.13003 19.制革商PR。防晒产品配方。皮肤菌诊所。2006; 24(1):53-62。 doi:10.1016/j.det.2005.09.002 20。 Sasseville D.烷基糖苷:2017年“年度过敏原”。 皮肤接触,特应占用药物。 2017; 28(4):296。 doi:10.1097/ der.0000000000000290 21。 div> Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。 过敏原2006; 24(1):53-62。doi:10.1016/j.det.2005.09.002 20。Sasseville D.烷基糖苷:2017年“年度过敏原”。 皮肤接触,特应占用药物。 2017; 28(4):296。 doi:10.1097/ der.0000000000000290 21。 div> Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。 过敏原Sasseville D.烷基糖苷:2017年“年度过敏原”。皮肤接触,特应占用药物。2017; 28(4):296。 doi:10.1097/ der.0000000000000290 21。 div>Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。 过敏原Rick JW,Brannon M,De Dr,Shih T,Hsiao JL,Shi VY。过敏原
在八面体配合物中,金属离子位于中心,配体位于六个角。图中,方向 x、y 和 z 指向八面体的三个相邻角。eg 轨道(dx 2 -y 2 和 dz 2 )的叶瓣指向 x、y 和 z 轴,而 t 2g 轨道(dxy、dzx 和 dyz)的叶瓣指向轴之间。因此,六个配体沿 x、yz、-x、-y 和 –z 方向的接近将使 dx 2 -y 2 和 dz 2 轨道(指向配体)的能量增加,远大于使 dxy、dzx 和 dyz 轨道(指向金属-配体键轴之间)的能量增加。因此,在八面体场的影响下,d轨道分裂为能量较低的三重简并轨道和能量较高的双重简并轨道。这两组轨道之间的主能级取为零,称为重心。这两个轨道之间的分裂称为晶体场分裂。稳定度为0.4 Δ o ,不稳定度为0.6 Δ o 。
图 3.11:系统性能比较…………………………………………………………………….56 图 3.12:初级双极线圈和初级单极线圈的互操作性研究…………..58 图 4.1:模拟中的线圈结构…………………………………………………………………………62 图 4.2:所提线圈结构的 MAXWELL 模拟模型概览和正面视图…………………………………………………………………………………….63 图 4.3:用于接收器的空心圆柱体……………………………………………………………………...64 图 4.4:所提线圈结构和同轴线圈结构中的设计变量…………………………………...64 图 4.5:所提线圈结构中的旋转角、同轴线圈结构中的旋转角以及随旋转角变化的互感……………………………………...66 图 4.6:YZ 平面中的磁通密度…………………………………………………………...68 图4.7:ZX 平面的磁通密度………………………………………………………………...68 图 4.8:XY 平面的磁通密度………………………………………………………………...69 图 4.9:线圈参数说明…………………………………………………………………………72 图 4.10:发射器 A 处的全桥逆变器和接收器 c 处的全桥整流器……………..73 图 4.11:接收器 c 和发射器 A 的等效互感模型………………………………..75 图 4.12:第 4.4 节中提出的线圈结构的仿真和实验模型……………………………………………………………………………………77 图 4.13:随气隙变化的自感和互感………………………………..79 图 4.14:实验设置……………………………………………………………………………………80 图 4.15: P out = 1.0 kW 和 CR = 12 Ω 时的波形……………………………………………………81 图 4.16:环境空气条件下 CR 模式和 CV 模式下的系统性能…………...81 图 4.17:三种条件下的系统性能………………………………………………………………...82 图 5.1:所提出的理想线圈结构和仿真模型概述……………………………………………...84 图 5.2:所提出的理想线圈结构和之前的线圈结构中的旋转错位……………………………………………………………………………………86 图 5.3:第 4 章中提出的理想线圈结构和之前的线圈结构的总互感随旋转错位的变化…………………………………………………87 图 5.4:所提出的分段线圈设计……………………………………………………………………...88 图 5.5:所提出的分段线圈设计与之前的线圈设计中总互感随旋转错位的变化错位..………………89 图 5.6:YZ 平面、ZX 平面和 XY 平面的磁场分布………………..90 图 5.7:电路图………………………………………………………………………………92 图 5.8:线圈原型的仿真模型………………………………………………………………95 图 5.9:总互感的模拟和测量结果………………………………………………96 图 5.10:采用所提出的线圈结构的无线充电系统的实验装置…………………………97 图 5.11:系统完全对齐且旋转错位为 30° 时的波形…….97 图 5.12:旋转错位时输出功率和 DC-DC 效率的实验结果……………………………………………………………………………………98
wo = oe g z =全部。 ee z q = of NS yr \ s:说eate:war ate a ate ro}或(oe)s茶(O)W 72)ao 72)ao 72)c:ro上的gh yz尖端[g o 4 x x x 0 gf a it_libibrares smitibrares smitibrares smitibrares smitibrares smitibrares no no no no nollillilististitution noctitution nolillilististiristrian safia = sme = smejia se! w 2 aw as 2 we'= dmd qs上的peel“ a =:,ae 4 watt jana = qe = = = = = ee ae - ge _ oc fa ow ay ar -z是“ pu = <4 ox <4 ox <=«py? 是yig,s a&s«giz es vy = is 4 \ = a vp re)是g; ro)oe oa〜_ 7 = [@)_ = 2 as r = s ee)2在noillilsna nvinoulince s3ivivit库中,史密斯(Noilnlilini nvinustliws)是 * re -ee — ee — ee)wn = es)wn = es) librarees zz ~~ n pre«ww = w = 〜a” = <= = = = = = = = z = z = wy,2 = z 5w 2 aw as 2 we'= dmd qs上的peel“ a =:,ae 4 watt jana = qe = = = = = ee ae - ge _ oc fa ow ay ar -z是“ pu = <4 ox <4 ox <=«py?是yig,s a&s«giz es vy = is 4 \ = a vp re)是g; ro)oe oa〜_ 7 = [@)_ = 2 as r = s ee)2在noillilsna nvinoulince s3ivivit库中,史密斯(Noilnlilini nvinustliws)是 * re -ee — ee — ee)wn = es)wn = es) librarees zz ~~ n pre«ww = w = 〜a” = <= = = = = = = = z = z = wy,2 = z 5
在过去的十年中,人工智能(YZ)和机器学习(BC)的使用有所增加。的最新发展导致对不同领域的脑电图(EEG)的使用兴趣。在医学和生物医学应用中,例如分析心理工作量和疲劳,识别脑肿瘤以及中枢神经系统疾病的康复;从临床应用到脑大氨酸界面和机器人应用,基于EEG的运动分析和分类广泛用于许多领域。本文回顾了EEG信号处理中使用的许多MS算法的应用,并介绍了广泛使用的算法,典型的应用程序方案,重大进展和现有问题。在研究中,研究了脑电图中现有的MS,包括脑部计算机界面,认知神经科学,诊断脑疾病和包括不同受试者在内的不同受试者。首先,简要描述了EEG信号处理中使用的MS算法的基本原理,包括Evolution神经网络,支持向量机,K-AT K-EEG K-EEG附近的K-EEG,神经网络。还介绍了一项关于脑电图分析中使用的MS应用的一般研究。结果,确定在研究中使用了最多的DVM和CNN方法,并且工作头主要在癫痫,BCI和酒精,睡眠和感知中进行。
✉ 通讯和材料索取请发送至 Pamela C. Ronald 或 Guotian Li。pcronald@ucdavis.edu;li4@mail.hzau.edu.cn。作者贡献 GL、GS、PS 和 PCR 设计了实验。GL 和 RJ 筛选并分析了 rbl1 突变体的基因组数据。GS、PS、XK、XH、YL、YW、QG、XC 和 LZ 进行了植物感染试验。GS、XK、XH 和 YW 进行了 DAB、ROS、水杨酸、亚细胞定位、RT-qPCR 和 GUS 组织化学分析。LY 和 ZQ 进行了生物信息学分析。GS、JG、LF、LG、JCM、YB 和 QL 进行了脂质组学分析。YZ 和 YW 进行了 rbl1 的化学补充分析。 GS、QS、QG、Q. Zhou 和 T.-YC 进行了酵母突变体互补分析。JZ 和 KX 生成了 CRISPR 构建体。XK、XH、YL、W. Zhou、W. Zhang、Q. Zeng 和 ZK 筛选了编辑后的品系。GS、YW、RH 和 JX 进行了田间试验和农艺性状分析。GL 和 GS 起草了手稿,GL、GS、PS、LF、LZ、LG、KX、JCM、QL、YB、ZK 和 PCR 修改了手稿。所有作者都阅读并批准了最终手稿。
在微电子领域,铜线越来越多地代替金线用于制作键合互连。在这些应用中使用铜有许多潜在的好处,包括更好的电气和机械性能以及更低的成本。通常,导线键合到铝接触垫上。然而,人们对导线/垫界面处 Cu/Al 金属间化合物 (IMC) 的生长了解甚少,如果过度生长,会增加接触电阻并降低键合可靠性。为了研究 Cu 球键合中 Cu/Al IMC 的生长,在 250 C 下高温老化长达 196 小时,以加速键合的老化过程。然后记录了 Cu/Al IMC 的生长行为,并获得了 6.2 ± 1.7 · 10 14 cm 2 /s 的 IMC 形成速率。除了垂直于键合界面的常规 yz 平面横截面外,还报告了平行于界面层的 xy 平面横截面。在光学显微镜下,在球键合 xy 平面横截面上,Cu/Al 界面处有三层 IMC 层,它们的颜色不同。微 XRD 分析结果证实,Cu 9 Al 4 和 CuAl 2 是主要的 IMC 产物,而发现第三相,可能是 CuAl。在老化过程中,IMC 膜从键合外围开始生长,并向内传播至中心区域。随后,随着老化时间的增加,在 IMC 层和 Cu 球表面之间观察到空洞,也是从键合外围开始。空洞最终连通并向中心区域发展,导致球和金属间层之间几乎完全断裂,这是 81 小时后观察到的。2007 Elsevier Ltd. 保留所有权利。
电子邮件:skolkoori@rosen-group.com抽象超声波探针是自动超声波非破坏性检查机的组成部分,可检测和大小生产线中各种材料中的缺陷。需要根据欧洲标准DIN EN ISO 22232-2评估应用特定的超声探针的性能特征的完整定量评估。此要求不仅提高了制造探针的质量保证,而且还向最终用户提供了有用的技术数据,以优化现场的超声波测试。此外,探针特征的评估应在整个使用寿命中定期进行。这项工作的主要目的是开发和验证一种新型的超声浸入式扫描仪,以定量测量和评估应用特定于应用的UT探针的超声声束特性。与高精度运动控制单元(Hexapod)集成的一种新型超声浸入式扫描仪,开发了六个轴的高精度运动控制单元(Hexapod),以测量完整的超声探测特征,其中包括三种不同的平面(XY,XZ和YZ)中的斜视角度测量,RF - 信号及其频率光谱及其频率光谱在水上钢接口和声音束参数范围内,包括不同的频谱。根据DIN EN ISO 22232-2执行自动扫描,数据采集,评估,可视化和测试报告生成。根据DIN EN ISO 22232-2对测量的声场参数和接受标准的定量分析。在3 mm半球钢反射器上,使用脉冲回声技术的中心频率在0.2-15 MHz的中心频率范围为0.2-15 MHz。通过使用新开发的自动浸入式扫描仪,我们在测得的声场图案中实现了几微米(〜15 µm)的空间分辨率,并在较广泛的UT探针范围内的尖角度测量中实现了良好的角度分辨率(〜0.05°)。关键字:超声波NDT,超声探针,高分辨率,脉冲回声技术,声束特性,自动扫描仪; DIN EN ISO 22232-2,自动探针测试证书