1。使用模拟的室内拾取曲线比较MC33X与MC33进行比较,同时强调CPU,扫描引擎,显示和WLAN的亮度相等。2。MC33AX使用带有7000 mAh电池的室内采摘配置文件。3。MC330X和MC330K产品系列之间的黄金比较。4。可以从第一个日期可出售的10(10)年救生员和斑马的Onecare支持。5。斑马的所有电子产品都可能在IEC 62474危险物质清单上包含痕量的化学物质。6。MC330x
摘要:神经保护性药物向眼后部分递送是抵消视力丧失的主要挑战。这项工作着重于基于聚合物的纳米载体的开发,该纳米载体专门设计用于靶向后眼。聚丙烯酰胺纳米颗粒(ANP)合成和表征,并且通过与花生凝集素(ANP:PNA)和Neurotrophinnerve nerve nerve nerve nerve生长因子(ANP:pna:pna:pna:pna:ngf)结合,利用了高结合效率来获得眼部靶向和神经保护能力。使用氧化应激诱导的视网膜变性模型评估了ANP:PNA:NGF的神经保护活性。纳米成型后,NGF改善了玻璃体内注射过氧化氢后斑马鱼幼虫的视觉功能,并伴随着视网膜中凋亡细胞的数量减少。此外,ANP:PNA:NGF抵消了暴露于香烟烟雾提取物(CSE)的斑马鱼幼虫中的视觉行为受损。总的来说,这些数据表明我们的聚合物药物输送系统代表了针对视网膜变性实施目标治疗的有前途的策略。
产妇接触环境有毒物质是其后代神经行为健康的重要危险因素。在我们的研究中,我们研究了母体暴露于氯烷基醚磺酸(Cl- PFESA,商业名称:F-53B)对Zebrafif Sh的后代幼虫的潜在机制的影响。随后将暴露于Cl-Pfesas(0、0.2、2、20和200μg/l)的成年斑马鱼培养了5天。观察到斑马鱼胚胎中较高浓度的Cl-Pfesas,以及在后代幼虫中降低的游泳速度和距离的降低。分子对接分析表明,CL-PFESA可以与脑衍生的神经性因子(BDNF),蛋白激酶C,Alpha,(PKCα),Ca 2+ -ATPase-atPase和Na,Na-na-aTPase形成氢键。分子和生化研究证明CL-PFESA会诱导伴有副作用功能障碍,眼发育缺陷和Ca 2+稳态破坏。一起,我们的结果表明,孕产妇暴露于Cl-Pfesas会导致Ca 2+同源性,多巴胺能功能障碍和眼睛发育缺陷的破坏介导的后代的行为改变。
大脑衰老是一个复杂的过程,涉及多种途径,包括从细胞到分子的各种成分。本研究旨在探讨斑马鱼大脑从青年到成年,以及从成年到老年过程中基因表达的变化。对从斑马鱼脑中分离的神经元细胞进行 RNA 测序。这些细胞富含祖细胞标记物,而这些标记物在整个衰老过程中会减少。我们发现了 176 个具有统计学意义的差异表达基因,并根据基因本体描述确定了一组基因,这些基因被归类为细胞粘附分子。在另一组斑马鱼大脑、健康人类和阿尔茨海默病大脑样本以及 Allen Brain Atlas 数据中进一步测试了这些基因的相关性。我们观察到,在衰老过程中,GJC2 和 ALCAM 这两个基因的表达变化在所有实验组中都是一致的。我们的发现为健康大脑老化提供了一组新的标记,并为神经退行性疾病的治疗方法提出了新的目标。2020 Elsevier Inc. 保留所有权利。
项目 确定斑马鱼受伤后控制心脏成功再生的机制 描述 心脏的再生能力在动物界中差异很大。包括人类在内的哺乳动物在心脏受伤(心脏病发作)后再生反应较差。因此,由于缺乏直接针对受伤原因的治疗,患者常常会出现并发症。另一方面,斑马鱼在受伤后表现出非凡的自然再生心脏的能力。因此,通过确定驱动积极再生反应的斑马鱼因素和机制,我们可以潜在地利用这些知识并将其应用于表现出较差再生反应的动物,以新疗法和新疗法的形式。在这个项目中,我们将结合基因操控和先进的实时成像技术来识别和控制心脏再生过程中重要的细胞潜在因素。因此,该项目将为单个细胞内以及细胞之间的复杂相互作用提供新的见解,以成功完成再生。技术 克隆、免疫荧光、RNA 原位杂交、基因操作(RNA、crispr、tol2、突变体、转基因)、斑马鱼处理、活体共聚焦成像 参考文献 doi: 10.1126/science.abo6718 doi: 10.1242/dev.199740 doi: 10.1016/j.ydbio.2020.12.004 联系方式 Phong NGUYEN 遗传学和发育生物学 UMR3215/U934 单位 电子邮箱:phong.nguyen@curie.fr 电话:+33 (0) 156246897 网站:htps://insutut-curie.org/equipe/nguyen
Thermo Scientific™ Iliad™ 300 (S)TEM 是一款完全集成的分析(扫描)透射电子显微镜,配备新型 Iliad EELS 光谱仪和能量过滤器、专用的 Zebra EELS 探测器、新型 NanoPulser 静电束阻断器,以及 Thermo Scientific™ Dual-X 或 Super-X™ EDX 检测系统之间的选择。
1。根据电池充电器测试的单位能量消耗,使用USB-C型USB型电源适配器进行USB型电源适配器测试。2。EM45 RFID设备,使用室外浏览器密集型轮廓和5000 mAh电池。3。从第一个日期可以出售的救生员和Zebra Onecare支持6年。4。使用5000 mAh电池和USB快速充电器向EM45 RFID企业手机充电从0%到90%。5。斑马的所有电子产品都可能在IEC 62474危险物质清单上包含痕量的化学物质。
一个引起关注的特征是男性唱歌以吸引伴侣的求爱歌曲。斑马芬奇(Zebra Finch)的歌曲是一个合乎逻辑的特征,因为男性在年轻时就学会了自己的歌,并且他们的歌一生都保持不变。歌曲学习与其他形式的学习形式一样,可以反映认知功能。最后,男性歌曲可能会影响男性是否找到伴侣,这对于他们能够将基因传递给下一代很重要。女性更喜欢唱歌更复杂的歌曲。下面的图2显示了一个斑马芬奇歌曲的示例,如果您随着时间的推移绘制歌曲的音调。这称为超声图。
基于LNCRNA的控制会影响心肌梗塞,冠状动脉疾病,肥大和肌肌肌肉营养不良等心脏病生理学。本研究使用基因破裂的转座子(GBT)来筛选斑马鱼(Danio rerio)进行插入诱变。我们确定了三个插入突变体,其中GBT捕获了心脏基因。成年活的GBT突变体之一患有心动过心(心律不齐)和心脏室肿大或肥大。我们将其命名为“ Bigheart。” Bigheart突变插入图中的Grin2Bb或N-甲基D-天冬氨酸受体(NMDAR2B)基因内含子2的反向取向。相邻cDNA末端分析的快速扩增表明,在grin2bb的内含子2中有一个新的插入位点转录本。对野生型斑马鱼心脏室的RNA测序的分析显示,在插入部位显示了可能的新转录本。由于此推定的lncRNA转录本满足了规范的特征,因此我们称此转录本GRIN2BB相关的RNA转录本(grin2bbart)。使用原位杂交,我们确定了心脏,中枢神经系统中的局部grin2bbart表达,以及发育中的胚胎和野生型成人斑马曲线中心和大动脉中的肌肉。Bigheart突变体降低了grin2bbart的表达。我们表明,Bigheart基因陷阱插入切除切除了心律不齐和心房肥大,并恢复了Grin2Bbart的表达。吗啡介导的grin2bbart的反义下调模仿Bigheart突变体的野生型斑马鱼胚胎胚胎;这表明Grin2Bbart与Bigheart相关。Western印迹分析突出显示心血管组织使用grin2bb作为钙渗透离子通道。对Bigheart突变体进行的钙成像实验表明心脏中的钙不当。Bigheart心脏转录组显示钙稳态,心脏重塑和收缩基因的差异表达。
脊柱为成年身体提供结构支撑,保护脊髓,并为在环境中移动提供肌肉附着。脊柱的发育和成熟及其生理学涉及整合多种肌肉骨骼组织,包括骨骼,软骨和纤维化关节,以及神经系统的神经支配和控制。人类脊柱最常见的疾病之一是青春期特发性脊柱侧弯(AIS),其特征是在健康的儿童中,青春期旁的脊柱异常的脊柱异常曲率发作。AIS的遗传基础在很大程度上未知。斑马鱼中胚胎表型的全基因组诱变筛查对了解胚胎脊柱的构建和模拟胚胎组织的早期图案的理解有助于。但是,胚胎后成熟和脊柱体内稳态所需的机制仍然很少了解。在这里,我们报告了一个小规模的前向遗传筛查的结果,用于成人可持续的隐性和主导斑马线突变,从而导致成人脊柱的明显形态异常。用N-乙基N-亚硝酸(ENU)诱导的种系突变被传输并筛选为1229 F1动物中的显性表型,随后在F3家族中繁殖到纯合性。从这些过程中,筛选了314个单倍体基因组,以影响影响总体形状的成人凹面表型。我们累计发现40个成人可行(3个显性和37个隐性)突变,每个突变导致脊柱形态发生缺陷。最大的表型组显示出幼虫发作轴向曲率,导致成人鱼类中没有椎骨发育不良的全身脊柱侧弯。对该表型组中16个突变系的成对互补测试显示至少9个独立的突变基因座。使用大规模平行的整个基因组或整个外显子组测序和减数分裂映射,我们定义了斑马鱼中几个基因座的分子身份。我们鉴定了Skolios /驱动蛋白家族成员6(KIF6)基因中的新突变,从而导致小鼠和斑马鱼的神经发育和dend依纤毛缺陷。我们还报告了Scospondin的多个隐性等位基因,以及具有血小板蛋白基序9(ADAMTS9)基因的分解蛋白和金属蛋白酶,它们在脊柱形态发生中都显示出缺陷。我们的结果提供了单基因性状的证据,这对于斑马鱼的正常脊柱发育至关重要,这可能有助于建立人类脊柱疾病的新候选风险基因座。