参考文献:1. OECD。《健康一览》,2019 年;2. OECD。劳工和社会事务卫生委员会,2019 年;3. Appleby J. 国王基金会,2013:10;4. Ebi KL 等人。在:伤害预防和环境健康,编辑。Mock CN 等人。2017 年;155–169;5. Leon DA 等人。《柳叶刀公共卫生》2019 年;4:e575–82;6. Leisinger KM 等人。《南方医学评论》2012 年;5:3–8;7. Yavdav H 等人。《柳叶刀全球健康》2021 年;9(11):e1553-60;8. Ward ZJ 等人。 Nat Med 2023;29:1253–61;9. 世界经济论坛,Southern Voice,2023 年;10. 卫生系统创新实验室。哈佛大学,2022 年;11. Kanwar AVS,Rahim MM。法律与医学杂志 2019 年;26:750–63;12. IQVIA:存档数据;13. Smith PC、Busse R。预防慢性病 2010;7:A102;14. Delgado P 等人。BMJ 2021;373:n966;15. Sørensen T 等人。即将出版的关于 TPO 的介绍性手稿;16. Atun R、Moore G。牛津大学出版社,2021 年;17. 世界卫生组织,欧洲卫生系统和政策观察站 2022 年;18. Byskov J 等人。卫生政策计划 2019;34:635-45。
背景:简介:Mizaj是关注波斯医学个体差异(PM)的基础。关于Mizaj对健康保存和治疗疾病的重要性,有必要获得米萨吉识别的标准工具。本研究的目的是为长者设计一份标准的自我报告的Mizaj识别问卷。方法:在这项探索性顺序研究中,通过审查PM文献并与PM专家和长者访谈,提取了Mizaj识别标准。设计了主要的问卷调查表,并使用加权KAPPA统计数据,Pearson相关系数(PCC)评估,接收器操作特征(ROC)曲线评估其有效性和可靠性,并确定截止点的特异性和敏感性。结果:在主要问卷中的101个项目中,有73个项目具有可接受的可靠性。在标准有效性和PCC评估后获得了最终的20个项目问卷。该问卷的敏感性和特异性为83%和88%,温暖度中适中为49%和80%,寒冷为72%和91%,湿度为57%,湿度为30%和79%,湿度为81%和81%和81%和67%。结论:建议将标准的米ZJ识别作为PM中临床医生和研究人员的补充诊断工具。此外,年龄超过60岁的人可以使用它来识别自己的米萨吉人,然后根据自己的Mizaj选择合适的PM或Unani Medicine Lifestyle建议。关键词:Mizaj,波斯医学,问卷,气质,Unani医学,验证评估。
1. Yu KR、Natanson H. 和 Dunbar CE (2016) 人类造血干细胞和祖细胞的基因编辑:前景和潜在障碍。人类基因治疗。729-740。2. Sun L.、Wu J.、Du F.、Chen X. 和 Chen ZJ (2012) 环 GMP-AMP 合酶是一种激活 I 型干扰素途径的细胞质 DNA 传感器。科学。339(6121) 786-91。3. Hoffman BE、Ertl HC、Terhorst C. High KA 和 Herzog RW (2012) 病毒免疫学前沿的基因治疗研究。微生物学前沿。3:182。 4. Dull T.、Zufferey R.、Kelly M.、Mandel RJ、Nguyen M.、Trono D. 和 Naldini, L. (1998) 具有条件包装系统的第三代慢病毒载体。病毒学杂志。72(11):8463-8471。5. Hacein-Bey-Abina S、Von Kalle C、Schmidt M、McCormack MP、Wulffraat N 和 Leboulch P. (2003) 两例 SCID-X1 基因治疗后患者中 LMO2 相关克隆 T 细胞增殖。科学。302:415-9。6. Raj D.、Davidoff AM 和 Nathwani AC (2011) 用于血友病 B 基因治疗的自互补腺相关病毒载体:进展与挑战。血液学专家评论。 4(5), 539-49。7. Rogers GL 和 Herzog RW (2015) 血友病的基因治疗。生物科学前沿。20:556-603。8. Lombardo A.、Genovese P.、Beausejour CM、Colleoni S.、Lee YL、Kim KA 和 Holmes, MC (2007) 使用锌指核酸酶和整合酶缺陷型慢病毒载体递送对人类干细胞进行基因编辑。自然生物技术。25(11):1298。
潘宁阱已用于对数百个离子进行量子模拟和传感,并提供了一种扩大捕获离子量子平台的有希望的途径,因为它能够在二维和三维晶体中捕获和控制数百或数千个离子。在潘宁阱和更常见的射频保罗阱中,激光通常用于驱动多量子比特纠缠操作。这些操作中退相干的主要来源是非共振自发辐射。虽然许多捕获离子量子计算机或模拟器使用时钟量子比特,但其他系统(尤其是具有高磁场的系统,如潘宁阱)依赖于塞曼量子比特,这需要对这种退相干进行更复杂的计算。因此,我们从理论上研究了自发辐射对在高磁场中使用捕获离子基态塞曼量子比特执行的量子门的影响。具体来说,我们考虑了两种类型的门——光移位( ˆ σ zi ˆ σ zj )门和 Mølmer-Sørensen( ˆ σ xi ˆ σ xj )门——它们的激光束近似垂直于磁场(量化轴),并比较了每种门中的退相干误差。在每种门类型中,我们还比较了与驱动门所用的激光束的失谐、偏振和所需强度有关的不同工作点。我们表明,这两种门在高磁场下的最佳工作条件下都能具有相似的性能,并研究了各种工作点的实验可行性。通过检查每个门的磁场依赖性,我们证明,当 P 态精细结构分裂与塞曼分裂相比较大时,Mølmer-Sørensen 门的理论性能明显优于光移门。此外,对于光移门,我们对高场下可实现的保真度与最先进的双量子比特离子阱量子门的保真度进行了近似比较。我们表明,就自发辐射而言,我们当前配置可实现的保真度比最好的低场门大约高一个数量级,但我们也讨论了几种替代配置,其潜在错误率与最先进的离子阱门相当。
草案 2024 年 9 月 26 日 2024 年 9 月 26 日星期四上午 9:30,盐河项目农业改进和电力区(以下简称“区”)电力委员会会议在 SRP 行政大楼 Hoopes 董事会会议室召开,地址:亚利桑那州坦佩北米尔大道 1500 号。本次会议以面对面和电话会议的方式进行,符合公开会议法律准则。区和盐河谷用水者协会(以下简称“协会”)统称为 SRP。出席点名的委员会成员有主席 JM White Jr.;C. Clowes、RJ Miller、KL Mohr-Almeida、MV Pace 和 PE Rovey。缺席点名的委员会成员是副主席 LC Williams。出席的还有副总裁 CJ Dobson;董事会成员 RC Arnett、KJ Johnson、LD Rovey 和 SH Williams;理事会主席 JR Shelton;理事会联络员 GE Geiger;理事会成员 ML Farmer、EC Gorsegner、JW Lines、WP Schrader III 和 NJ Vanderwey;L. Arthanari、IR Avalos、MJ Burger、AP Chabrier、JD Coggins、AY Gilbert、CM Hallows、ZJ Heim、RO Hernandez、LF Hobaica、SA Horgen、VP Kisicki、MM Klein、KJ Lee、ML Martin、MR Maser、GA Mingura、KR Nielsen、RC Norlin、J. Oh、BA Olsen、DD Patterson、IC Perez、SA Perkinson、JM Pratt、KS Ramaley、JC Robertson、CM Sifuentes、SRP 的 MD Weber;Origis Energy 的 John Deese;Snell & Wilmer, LLP 的 Matt Derstine;Copper State Consulting Group 的 Ian Calkins;Interwest Energy Alliance 的 Ben Fitch-Fleischmann 和 Sam Johnston; Arevia Power 的 Roger Halbakken;NextEra Energy 的 Ashley Johnson;Tierra Strategy 的 Autumn Johnson;Plus Power 的 Nicholas Navarro;Strata Clean Energy 的 Samantha Salton 和 Bridget Sidwell;RWE 的 Zach Nelson;以及能源管理局 (TEA) 的 Laura Trolese。根据 ARS §38-431.02,公司秘书办公室的 Andrew Davis 已于 2024 年 9 月 24 日星期二上午 9:00 在亚利桑那州坦佩北米尔大道 1500 号 SRP 行政大楼张贴了电力委员会会议的通知和议程。主席 JM White Jr. 宣布会议开始。同意议程主席 JM White Jr. 请求委员会批准整个同意议程。
1. Kuehnast, T.、Kumpitsch, C.、Mohammadzadeh, R.、Weichhart, T.、Moissl-Eichinger, C. 和 Heine, H. 2024.《探索人类古生物组:其与健康和疾病的相关性及其与人类免疫系统的复杂相互作用》,FEBS 杂志。 10.1111/febs.17123 2. Zamyatina, A., Strobl, S., Zucchetta, D., Vasicek, T., Alessandro, M., Ruda, A., Widmalm, G. 和 Heine, H. 2024.《非还原糖支架能够开发具有皮摩尔效力的免疫调节 TLR4 特异性 LPS 模拟物》,Angew Chem Int Ed Engl:e202408421。 10.1002/anie.202408421 3. Heine, H.、Adanitsch, F.、Peternelj, TT、Haegman, M.、Kasper, C.、Ittig, S.、Beyaert, R.、Jerala, R. 和 Zamyatina, A. 2021.《使用二糖脂质 A 模拟物定制调节细胞促炎反应》,Front Immunol,12:631797。10.3389/fimmu.2021.631797 4. Vierbuchen, T.、Stein, K. 和 Heine, H. 2019.《RNA 正在造成损害:RNA 特异性 Toll 样受体对健康和疾病的影响》,Allergy,74:223-35。 10.1111/all.13680 5. Stein, K., Brand, S., Jenckel, A., Sigmund, A., Chen, ZJ, Kirschning, CJ, Kauth, M. 和 Heine, H. 2017.“树突状细胞对乳酸乳球菌 G121 及其 RNA 的内体识别是其抗过敏作用的关键”,《过敏与临床免疫学杂志》,139:667-78 e5。 10.1016/j.jaci.2016.06.018 6. Vierbuchen, T.、Bang, C.、Rosigkeit, H.、Schmitz, RA 和 Heine, H. 2017. “与人类相关的古细菌 Methanosphaera stadtmanae 通过其 RNA 被识别并诱导 TLR8 依赖的 NLRP3 炎症小体激活”,Front Immunol,8:1535。10.3389/fimmu.2017.01535 7. Bang, C.、Weidenbach, K.、Gutsmann, T.、Heine, H. 和 Schmitz, RA 2014. “肠道古细菌 Methanosphaera stadtmanae 和 Methanobrevibacter smithii 激活人类树突状细胞”, PloS one, 9: e99411。10.1371/journal.pone.0099411 8. Debarry, J.、Hanuszkiewicz, A.、Stein, K.、Holst, O. 和 Heine, H. 2010.《鲁氏不动杆菌 F78 的过敏保护特性是由其脂多糖赋予的》,过敏,65:690-7。 10.1111/j.1398-9995.2009.02253.x 9. Debarry, J.、Garn, H.、Hanuszkiewicz, A.、Dickgreber, N.、Blumer, N.、von Mutius, E.、Bufe, A.、Gatermann, S.、Renz, H.、Holst, O. 和 Heine, H. 2007.“从农场牛棚中分离出的鲁氏不动杆菌和乳酸乳球菌菌株具有很强的过敏保护特性”,过敏与临床免疫学杂志,119:1514-21。 10.1016/j.jaci.2007.03.023 10. Heine, H.、Kirschning, CJ、Lien, E.、Monks, BG、Rothe, M. 和 Golenbock, DT 1999.《切割
▪ 使用牙龈芯片对牙龈组织和宿主材料相互作用进行微生理建模。Muniraj G、Tan RHS、Dai Y、Wu R、Alberti M、Sriram G*。先进医疗材料 2023;e2301472。▪ 流体流动诱导的牙周膜干细胞球体芯片活力和骨分化调节。Mishra A、Kai R、Atkuru S、Dai Y、Piccinini F、Preshaw PM、Sriram G*。生物材料科学 2023。▪ 使用血管化牙龈结缔组织等效物模拟牙周宿主-微生物相互作用。Makkar H、Lim CT、Tan KS、Sriram G*。生物制造 2023, 15(4), 045008。▪ 在牙龈缝芯片中模拟龈沟液流动和宿主-口腔微生物组相互作用。Makkar H、Zhou Y、Tan KS、Lim CT、Sriram G*。先进医疗材料 2023;12(6):e2202376。▪ 使用微流控牙芯片和牙龈等效物表征氟化银二胺细胞毒性。Hu S、Muniraj G、Mishra A、Hong K、Lum JL、Hong CHL、Rosa V、Sriram G*。牙科材料 2022;38(8),1385-1394。▪ 3D 牙龈和牙周结缔组织等效物对微生物定植的不同免疫反应。 Makkar H、Atkuru S、Tang YL、Sethi T、Lim CT、Tan KS、Sriram G*。组织工程杂志 2022;13:20417314221111650。▪ 研究牙髓再生的方法和生物实验模型的批判性分析。Rosa V、Sriram G、McDonald N、Cavalcanti BN*。国际牙髓病学杂志 2022;55 增刊 2:446-455。▪ 双光子荧光显微镜及其在血管生成和相关分子事件中的应用。Lee M、Kannan S、Muniraj G、Rosa V、Lu WF、Fuh JYH、Sriram G*、Cao T*。组织工程 B 部分评论。2022;28(4):926-937。 ▪ 口腔成纤维细胞的细胞老化差异调节细胞外基质的组织。Atkuru S、Muniraj G、Sudhaharan T、Chiam KH、Wright GD、Sriram G*。J Periodontal Research 2021;56:108–120。▪ 使用基于胶原蛋白的生物墨水进行 3D 生物打印和血管化组织结构的微尺度组织。Muthusamy S、Kannan S、Lee M、Sanjairaj V、Lu WF、Fuh JYH、Sriram G*、Cao T*。生物技术生物工程 2021;118(8):3150-3163。▪ 在化学定义的培养条件下制造血管化组织结构。Sriram G*、Handral HK、Gan SU、Islam I、Rufaihah AJ、Cao T*。生物制造 2020;12(4):045015。 ▪ 用于人体皮肤和口腔粘膜等效物无创无标记成像的多光子显微镜。Sriram G*、Sudhaharan T、Wright GD。分子生物学方法 2020;2150:195-212。▪ 具有增强表皮形态发生和屏障功能的全层人体皮肤芯片。Sriram G*、Alberti M*、Dancik Y、Wu B、Wu R、Feng ZJ、Ramasamy S、Bigliardi PL*、Bigliardi ‐ Qi M、Wang Z*。材料今日 2018;21(4):326-340。▪ 用于高精度皮肤渗透测试的多室微流控平台。Alberti M、Dancik Y、Sriram G、Wu B、Teo YL、Feng Z、Bigliardi-Qi M、Wu RG、Wang ZP、Bigliardi PL. Lab Chip . 2017;17(9):1625-1634. ▪ 成纤维细胞异质性及其对体外构建器官型皮肤模型的影响。Sriram G , Bigliardi PL, Bigliardi-Qi M. 欧洲细胞生物学杂志。2015;94(11):483-51。
4. Tu, Q.; Spanopoulos, I.; Hao, S.; Wolverton, C.; Kanatzidis, MG; Shekhawat, GS; Dravid, VP, 探究二维混合有机-无机钙钛矿中的应变诱导带隙调制。ACS Energy Letters 2019, 4 (3), 796-802。5. Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H., 钙钛矿太阳能电池中的应变工程及其对载流子动力学的影响。Nature communications 2019, 10 (1), 1-11。6. Ghosh, D.; Acharya, D.; Zhou, L.; Nie, W.; Prezhdo, OV; Tretiak, S.; Neukirch, AJ,混合钙钛矿中的晶格扩展:对光电特性和电荷载流子动力学的影响。物理化学快报 2019,10 (17),5000-5007。7. Nishimura, K.;Hirotani, D.;Kamarudin, MA;Shen, Q.;Toyoda, T.;Iikubo, S.;Minemoto, T.;Yoshino, K.;Hayase, S.,Sn-钙钛矿太阳能电池的晶格应变与效率之间的关系。ACS 应用材料与界面 2019,11 (34),31105-31110。8. Zhao, J.;Deng, Y.;Wei, H.;Zheng, X.;Yu, Z.;Shao, Y.;Shield, JE; Huang, J., 应变混合钙钛矿薄膜及其对钙钛矿太阳能电池固有稳定性的影响。Science advances 2017, 3 (11), eaao5616。9. Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, BR; Doughty, B.; Calhoun, TR; Ahmadi, M.; Ievlev, AV; Jesse, S.; Retterer, ST; Belianinov, A.; Xiao, K.; Huang, J.; Sumpter, BG; Kalinin, SV; Hu, B.; Ovchinnikova, OS, CH3NH3PbI3 钙钛矿中铁弹孪晶畴的化学性质。Nature Materials 2018, 17 (11), 1013-1019。10. Bush, KA; Rolston, N.; Gold-Parker, A.; Manzoor, S.; Hausele, J.; Yu, ZJ; Raiford, JA; Cheacharoen, R.; Holman, ZC; Toney, MF,钙钛矿薄膜形成过程中控制薄膜应力和起皱。ACS Energy Letters 2018, 3 (6), 1225-1232。11. Rolston, N.; Bush, KA; Printz, AD; Gold ‐ Parker, A.; Ding, Y.; Toney, MF; McGehee, MD; Dauskardt, RH,钙钛矿太阳能电池中的工程应力以提高稳定性。Advanced Energy Materials 2018, 8 (29), 1802139。12. Liu, Y.; Ievlev, AV; Collins, L.; Belianinov, A.; Keum, JK; Ahmadi, M.; Jesse, S.; Retterer, ST; Xiao, K.; Huang, J., 金属卤化物钙钛矿中的应变-化学梯度和极化。先进电子材料 2020,6 (4),1901235。 13. Jacobsson, TJ;Schwan, LJ;Ottosson, M.;Hagfeldt, A.;Edvinsson, T.,利用 x 射线衍射确定甲基铵铅钙钛矿中的热膨胀系数并定位温度诱导的相变。无机化学 2015,54 (22),10678-10685。 14. Rolston, N.;Bennett-Kennett, R.;Schelhas, LT;Luther, JM;Christians, JA;Berry, JJ;Dauskardt, RH,关于“光诱导晶格膨胀导致高效率钙钛矿太阳能电池”的评论。 Science 2020, 368 (6488)。15. Tsai, H.;Asadpour, R.;Blancon, J.-C.; Stoumpos, CC; Durand, O.; Strzalka, JW; Chen, B.; Verduzco, R.; Ajayan, PM; Tretiak, S.,光诱导晶格膨胀可实现高效钙钛矿太阳能电池。Science 2018,360 (6384),67-70。16. Tsai, H.;Nie, W.;Mohite, AD,对“光诱导晶格膨胀可实现高效太阳能电池”评论的回应。Science 2020,368 (6488)。17. Liu, Y.;Ievlev, AV;Collins, L.;Borodinov, N.;Belianinov, A.;Keum, JK;Wang, M.;Ahmadi, M.;Jesse, S.; Xiao, K., 有机-无机杂化钙钛矿中的光-铁相互作用。先进光学材料 2019, 7 (23), 1901451。18. Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P., 有机-无机铅卤化物钙钛矿中的巨光致伸缩。自然通讯 2016, 7 (1), 1-8。
