低场 (LF) MRI 扫描仪 (<1T) 在资源有限或电源不可靠的环境中仍然很普遍。然而,它们产生的图像的空间分辨率和对比度通常低于高场 (HF) 扫描仪。这种质量差异可能导致临床医生的解释不准确。图像质量迁移 (IQT) 旨在通过学习低质量和高质量图像之间的映射函数来提高图像质量。现有的 IQT 模型通常无法恢复高频特征,导致输出模糊。在本文中,我们提出了一种 3D 条件扩散模型来改进 3D 体积数据,特别是 LF MR 图像。此外,我们将跨批次机制整合到我们网络的自注意力和填充中,即使在小型 3D 块下也能确保更广泛的情境感知。在公开的人类连接组计划 (HCP) 数据集上进行的 IQT 和脑分区实验表明,我们的模型在数量和质量上都优于现有方法。该代码可在 https://github.com/edshkim98/DiffusionIQT 上公开获取。
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预先印刷此版本的版权持有人于2020年9月14日发布。 https://doi.org/10.1101/2020.09.13.13.20193722 doi:medrxiv preprint
由于需要利用最大、最清洁的能源,即太阳能,太阳能在当今时代显得尤为重要。产生太阳能最具创新性和最简单的技术之一是使用太阳能烟囱。然而,太阳能烟囱发电厂的投资成本高,而且传统上效率很低。数学和 CFD 模型提供了一种优化此类烟囱性能的好方法。若干因素会影响太阳能烟囱的发电量,包括几何因素(如集热器直径、烟囱高度)和昼夜温差。然而,挑战在于昼夜温差,因此发电量不稳定。在目前的研究中,建立了一个太阳能烟囱的中试规模 CFD 模型(原型为西班牙曼萨纳雷斯烟囱,哈夫,1984 年),并用实验数据和文献中的分析模型(与实验数据的偏差 ∼ < 10%)进行了验证。随后,研究了流动模式,并对烟囱的关键参数(即烟囱高度和集热器直径)进行了参数研究。首次研究了昼夜变化对发电量的影响。考虑到昼夜变化,发现夜间发电量是烟囱高度和集热器直径的线性函数;而在白天,发电量随着集热器直径和烟囱高度的变化而呈指数增加。
茎/祖细胞用于目标位点的组织再生作为均匀的组织,可以在临床上用于各种组织中的疾病和损伤31,32。可以使用组织来源的茎/祖细胞(39-41)轻松地制成不同类型的细胞表,例如软骨,食管上皮和心肌,39-41,并且在该领域的当前进展可以创建可移植的细胞表,包括视网膜色素表上皮和角膜上皮,使用诱导的pluriptent pluriptent stement stement(IPS)42,42,42,42,42,42,42,42,42。但是,细胞表技术的一个重大问题是,仍然很难构建由多种细胞类型33组成的复杂组织的三维结构。由牙骨质,PDL和牙槽骨组成的牙周组织是一种特征性的复合组织,具有
摘要:这项工作报告了基于K-Carrageenan和Alginate钠的海洋衍生多糖配方的开发,以生产一种用于工程技术的新型脚手架。在3D打印之前,通过流变测试评估了双成分墨水的粘弹性。在没有任何交联的两个聚合物之间具有不同重量比的组成,第一次对我们的最大知识进行了3D打印,并且对制造参数进行了优化,以确保受控体系结构。在存在不同浓度的氯化物混合物(CaCl 2:KCl = 1:1; v / v)的情况下,进行了3D打印支架的交联。通过肿胀行为和机械性能评估了交联方案的效率。肿胀行为表明当交联剂的浓度增加时,肿胀程度下降。这些结果与纳米识别测量和宏观测试的结果一致。还使用形态分析来确定样品冻干后样品的孔径以及脚手架的均匀性和微体系特征。总体而言,注册的结果表明,双成分墨水ALG/KCG = 1:1可能对组织工程应用显示出潜力。
随着建筑、工程和施工 (AEC) 行业越来越重视可持续性和资源效率,无人机 (UAV) 和地面激光扫描仪 (TLS) 已成为使用 3D 建模监测和检查建筑结构的不可或缺的工具。本研究致力于评估无人机摄影测量和 TLS 技术在建筑物及其结构部件的 3D 建模中获得的质量和准确性。调查涉及无人机在目标结构周围进行天底和倾斜飞行任务以采集数据,利用六 (6) 个地面控制点 (GCP),而 TLS 数据收集采用通过遍历方法的直接地理参考。结果表明,TLS 由于其点云密度更高而产生了卓越的表面重建质量,而无人机数据满足众多应用的要求,提供了一种方便且经济可行的数据采集解决方案。至于准确性,从两种仪器上都可以辨别出建筑物物体,差异很小,达到厘米级的精度。这些发现不仅凸显了无人机和 TLS 在优化 3D 建模过程中的潜力,而且还为从事城市规划、建筑设计和结构分析工作的专业人士提供了实用的见解。
本文描述了FOI上有关3维(3-D)成像的持续研究。具体来说,我们解决了激光雷达带来的新可能性,重点是用于高分辨率3-D成像的系统。3-D激光雷达是一项可行的技术,旨在预防和打击犯罪和恐怖主义。实时3-D传感是一种现实,除了通过范围成像来实现更传统的技术(例如立体声视觉和结构光)外,还可以。3-D传感闪光成像激光雷达的当前开发将在长度范围内以CM分辨率以完整的视频速率提供高分辨率3-D成像的能力。很可能会彻底改变许多应用程序,包括执法和法医调查。与常规的被动成像系统(例如CCD和红外线(IR)技术)相反,激光雷达提供强度和范围信息,并具有穿透某些场景元素(例如植被和窗户)的能力。这又意味着在对象识别和识别中,例如,我们解决了3-D激光雷达系统的一些新功能。结果清楚地表明,3-D成像激光雷达系统在当今可以在刑事司法系统中使用的各种情况有用,可以使技术能够预防和打击犯罪和恐怖主义。
引言:对受影响的特定解剖结构进行三维(3-D)重建可以帮助临床医生更好地可视化和利用来自三维成像方式(包括计算机断层扫描(CT)或磁共振成像(MRI)[1])的体积事实。从临床图像中获取大脑解剖结构已被证实对术前计划和计算机辅助手术非常有用。从 CT 或 MRI 图像重建 3-D 模型的传统方法主要涉及图像处理和可视化技术,并且图像中已经存在三维数据。使用关于大脑形状和形状模型的一些预先记录从大脑图像进行三维建模已经成为一个研究感兴趣的话题[2]。根据用于重建的信息,可以从图像进行 3D 重建的方法可分为以下几种。
1. Kyeremateng, N. A.、Brousse, T. 和 Pech, D. (2016)。微型超级电容器作为片上电子设备的微型储能组件。Nat. Nanotechnol. 12,7。2. Long, J. W.、Dunn, B.、Rolison, D. R. 和 White, H. S. (2004)。三维电池架构。Chem. Rev. 104,4463-4492。3. Arthur, T. S.、Bates, D. J.、Cirigliano, N.、Johnson, D. C.、Malati, P.、Mosby, J. M.、Perre, E.、Rawls, M. T.、Prieto, A. L. 和 Dunn, B. (2011)。三维电极和电池架构。MRS Bull。 36 , 523-531。4. Roberts, M.、Johns, P.、Owen, J.、Brandell, D.、Edstrom, K.、El Enany, G.、Guery, C.、Golodnitsky, D.、Lacey, M.、Lecoeur, C. 等 (2011)。3D 锂离子电池——从基础到制造。J. Mater. Chem. 21 , 9876。5. Oudenhoven, J. F.、Baggetto, L. 和 Notten, P. H. (2011)。全固态锂离子微电池:各种三维概念的回顾。Adv. Energy Mater. 1 , 10-33。 6. Yabuuchi, N., Kubota, K., Dahbi, M., 和 Komaba, S. (2014)。钠离子电池的研究进展。Chem. Rev. 114 , 11636-11682。 7. Wu, X., Leonard, D. P., 和 Ji, X. (2017)。新兴非水系钾离子电池:挑战与机遇。Chem. Mater. 29 , 5031-5042。 8. Muldoon, J., Bucur, C. B., 和 Gregory, T. (2014)。非水系多价二次电池的探索:镁及其他。Chem. Rev. 114 , 11683-11720。 9. Dunn, B., Kamath, H., 和 Tarascon, J. M. (2011)。电网电能存储:电池的选择。科学 334, 928-935。 10. Ni, J. 和 Li, L. (2018)。用于钠微电池的自支撑三维阵列电极。副词。功能。马特。 28, 1704880。 11. Komaba, S.、Murata, W.、Ishikawa, T.、Yabuuchi, N.、Ozeki, T.、Nakayama, T.、Ogata, A.、Gotoh, K. 和 Fujiwara, K. (2011)。硬碳电极的电化学钠插入和固体电解质界面。副词。功能。马特。 21、3859-3867。 12. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., 和 Wang, C. (2014)。膨胀石墨作为钠离子电池的优质阳极。Nat. Commun. 5, 4033。13. Ni, J., Fu, S., Wu, C., Maier, J., Yu, Y., 和 Li, L. (2016)。硫掺杂 TiO 2 的自支撑纳米管阵列可实现超稳定和强大的钠存储。Adv. Mater. 28, 2259-2265。14. Fu, S., Ni, J., Xu, Y., Zhang, Q., 和 Li, L. (2016)。氢化驱动导电 Na 2 Ti 3 O 7 纳米阵列作为钠离子电池的坚固无粘合剂阳极。纳米快报。16,4544-4551。