1. 意大利的里雅斯特大学化学与制药科学系。2. 意大利帕多瓦希望城儿科研究中心基金会。3. 卡塔尔多哈 Sidra Medicine 癌症项目。4. 瑞典斯德哥尔摩卡罗琳斯卡医学院环境医学研究所。5. 英国曼彻斯特大学化学系。6. 英国曼彻斯特大学生物、医学与健康学院纳米医学实验室。7. 美国费城宾夕法尼亚大学神经工程与治疗中心神经病学、生物工程、物理医学与康复系;美国费城 Michael J. Crescenz 退伍军人医疗中心神经创伤、神经退行性疾病与修复中心。8. 土耳其安卡拉大学生物医学工程系。 9. 安卡拉大学干细胞研究所,安卡拉,土耳其。10. 德累斯顿工业大学科学学院化学与食品化学系,德累斯顿,德国。11. 帕多瓦大学生物医学科学系,帕多瓦,意大利。
2纽约大学化学系,纽约,纽约10003,美国 *通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); ned.seeman@nyu.edu(n.c.s.)。抽象的分支DNA基序是所有合成DNA纳米结构的基本结构元素。但是,分支方向的精确控制仍然是进一步增强整体结构秩序的关键挑战。在这项研究中,我们使用两种策略来控制分支方向。第一个基于固定的霍利迪连接,该连接在分支点上采用特定的核苷酸序列,以决定其方向。第二个策略是使用角度构造支柱在分支点上使用柔性垫片固定分支方向。我们还证明,可以通过规范的Watson-Crick碱基配对或非典型的核酶相互作用(例如I-MoTIF和G-Quadruplex)动态地实现分支方向控制。具有从化学环境的精确角度控制和反馈,这些结果将使新型的DNA纳米力学传感设备和精确有序的三维体系结构。在过去的四十年中,随着DNA纳米技术的快速发展,多功能的DNA纳米结构具有越来越增强的复杂性[1] [1]。作为分支结构基序在DNA纳米结构中无处不在,对螺旋分支的精确角度控制是关键挑战之一。相比之下,几何控制在很大程度上避开了DNA网络设计。对这些方案的拓扑控制已在很大程度上通过序列设计,螺旋时期和连接连通性的处方[2]阐明。Angle and lattice morphology is generally observed to be an emergent property of topological self-assembly—indeed the tensegrity triangle, a hallmark three-dimensional (3D) DNA lattice [3] , has three attainable internal angles, 101 º, 111 º, and 117 º, which is an apparent result of lattice stress by changing the edge length in otherwise topologically-similar structures.考虑到这一点,在现场中,获得更高的结构顺序(包括拓扑和几何特性)仍然是一个关键的挑战,可以作为实现设计师纳米材料功能的更雄心勃勃的目标的基础(例如酶促活动,刚性晶体支架,固定的晶体支架,纳米粒子阵列等)。类似于减数分裂的移动霍利迪交界处的固定的四臂连接是DNA纳米技术中最早的结构图案[2A,4]。它不仅在由无脚手架的DNA“乐高”方法构建的纳米结构中广泛使用[5],而且还使用脚手架的DNA折纸方法在不同的结构中呈现[6]。已证明分支方向由分支点序列[7]和交叉类型[8]定义,这表明了精确几何控制的机会。这种合成性指出了具有精确和动态原子布置的高阶DNA纳米结构的可行性。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。
自 2019 年以来,数字赋权基金会 (DEF) 一直通过研讨会、报告和编辑书籍探索人工智能的社会、政治、经济和文化影响,特别是在中央政府的国家人工智能战略 (#AIforAll) 之后,该战略旨在推动人工智能在医疗、农业、教育和基础设施等领域的发展。DEF 认识到,信息和通信技术的进步不仅影响白领工人,还影响农村和服务不足的社区,而这些社区在发展政策中往往被忽视。DEF 的“公正人工智能 - 社区数据和算法”计划侧重于建立社会正义与技术之间的联系,重点关注数据对社区日益增长的影响。该计划采用人工智能造福社会的方法,旨在探索人工智能在印度农村和近郊地区的社会影响方面的研究空白,研究人工智能对金融、教育和服务领域的边缘化社区的影响,并增强年轻人对人工智能用途和局限性的理解。它还寻求建立关于人工智能问责制的政策对话,制定多方利益相关者方法来解决人工智能中的排斥、偏见和不透明问题,并在加强草根初创企业的同时指导人工智能解决方案以造福社会。此外,DEF 致力于通过人工智能、算法系统和数据保护知识为 SoochnaPreneurs、社区和社区驱动的创新生态系统提供支持,同时开发以公民为中心的数字设计和模型,以便在印度有意义地采用人工智能。
Schottky接触是半导体和金属之间关键的界面,在纳米 - 症状导向器件中变得越来越重要。shottky屏障,也称为能量障碍,可以控制跨金属 - 高症导体界面的耗竭宽度和载体运输。控制或调整Schottky屏障高度(SBH)一直是任何半导体设备成功运营中的至关重要问题。本综述提供了SBH静态和动态调整方法的全面概述,特别关注纳米半导体设备的最新进步。这些方法涵盖了金属,界面间隙状态,表面修饰,较低图像的效果,外部电场,光照明和压电效应的工作函数。我们还讨论了克服界面间隙状态引起的费米级固定效应的策略,包括范德华触点和1D边缘金属触点。最后,这篇评论以这一领域的未来观点结束。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。保留所有权利。
对于(1.1)的所有解决方案u(t),其中ω⊂r是可测量的子集。不等式(1.2)衡量schr odinger方程解决方案的解决方案如何在域的子集上汇总。这样的特性与高频波传播现象以及Schr odinger operator的准膜的浓度特性有关。结果对不同的潜在mani-和相应的schr odinger操作员很敏感。估计可观察性估计值(1.2)的另一个动机是证明相关控制系统的确切可控性。有关精确语句,请参见推论1.4。在一般框架中,有三个参数会影响Schr'odinger类型方程的可观察性估计值。这些是基础几何形状(构成方程式的背景流形和相关的schr odinger操作员),控制区域ω以及时间t> 0实现可观察性。当可观察性在任何时间t> 0时都保持时,控制成本,即最佳常数C(T,V,ω)的爆炸率也是研究的对象。在本说明中,我们在可测量的控制区域设置的无界设置上解决了1D schr odinger方程的可观察性问题。据我们所知,这种设置在文献中的研究要少得多。陈述主要结果,我们回想起控制区域的厚度条件。
erahertz(THz)辐射是电磁光谱的区域,频率在0.1至10 THz之间。1-3微型THZ源和检测器启用了各种应用,例如通信,监视筛查,材料分析,生物医学诊断和个人医疗保健跟踪。1,2,4,5 5物联网(IoT)应用的小型独立传感器的可穿戴电子设备和网络的出现正在推动低功率电子电路和设备或芯片水平上的能源收获中的研究。微型THZ功率探测器可能会成为可以充当能量收集设备的关键组件,尤其是在可透明的薄膜底物上,它们可以克服硅(SI)电子芯片的外形限制,并可以在可扩展的滚动过程中制造。因此,他们有可能无需电池或外部电源提供分散的传感器网络,被动读数电路或集成的移动设备。6
时序基准发生器是一个 8 级递增计数器 , 可以精确的产生时基。看门狗 ( WDT )是由一个 时基发生器和一个 2 级计数器组成,它可以在主控制器 或其它子系统处于异常状态时产生中断。 WDT 计数溢出时产生一个溢出标 志,此标志可以通过命令输出到 /IRQ 脚 ( 开漏输出 ) 。时序基准发生器和 WDT 时钟的来源。时基和看门狗共用 1 个时钟源,可配置 8 种频率: f WDT = f sys/2 n ( n=0~7 )
AS:对。我们有一个刚性旋翼,一个良好的系统。 PW:这是哪个时期?20 世纪 50 年代末? AS:我不知道。在那个时期。可能是在 60 年代。 PW:我知道洛克希德在 60 年代与休斯在直升机方面展开竞争。 AS:我们有一个很好的系统。我们拥有唯一可以盘旋的直升机。我想我们仍然保持着速度记录。我们在其中一架直升机上装了一个小型喷气发动机,然后飞走了。AH-56 是我们的。我们参加了陆军攻击直升机的竞标。AH-56 是我们的方案。我们进行了大规模的提案工作,我也参与其中。我回到华盛顿;我们有两架飞机的人回到华盛顿制定提案。然后我们赢得了合同,并开始建造它。我负责维护组。不再是技术手册了;在可维护性方面,我们与设计师合作,确保他们设计的东西是可维护的。 PW:这更像是现场服务,但与…… 集成在一起 AS:有一点,但现在与设计师合作。当他们设计东西时,我们会查看并审查它,以确保它是可维护的。我们在那架飞机上做得很好。我们在奥克斯纳德这里进行了测试,一名陆军飞行员有一天在地面上进行测试,他像这样击打操纵杆,导致旋翼像这样转动 [用手演示],他设法让旋翼挖进座舱盖。这是一件坏事。他们取消了合同。可能还有更多事情,而不仅仅是我刚才说的,但这就是我记得的。但我记得,从这里我会去奥克斯纳德的现场检查直升机。该项目在范奈斯,在范奈斯机场。我们在那里有一个大型设施。 PW:你说你 1958 年搬到了卡马里奥的家?AS:是的。PW:但你当时要通勤到范奈斯,而在此之前你还要通勤到伯班克?AS:我想当我们搬到这里时,我在范奈斯。这可以说明直升机工作的时间。之后,我去了伯班克。PW:将现场服务和可维护性与设计工程相结合,是该项目的新举措,还是洛克希德一直都在这样做?AS:我们一直都是这样做的。让我回顾一下:我们并不总是这样做。现场服务是现场服务;可维护性是工程的一部分。在某个时候,