缩略词列表 AC 空调 AER 全电动范围 CARB 加州空气资源委员会 CV 变异系数 CVS 恒定体积样本 CO 2 二氧化碳 EGR 废气再循环 EPA 美国环境保护署 ePTO 电动取力器 GVWR 车辆总重量等级 HDV 重型车辆 HEV 混合动力电动汽车 HHDDT 重型重型柴油卡车 HHV 液压混合动力汽车 HNCO 异氰酸 HVIP 混合动力和零排放卡车和公共汽车优惠券激励项目 ITR 创新技术法规 KI 动能强度 MY 车型年份 N 2 O 一氧化二氮 NH 3 氨 NO 一氧化氮 NO x 氮氧化物 NO 2 二氧化氮 NREL 国家可再生能源实验室 OBD 车载诊断 OEM 原始设备制造商 PEMS 便携式排放测量系统 PHEV 插电式混合动力电动汽车 PKE 正动能 PTO 取力器 ReFUEL可再生燃料和润滑油 SAE 汽车工程师协会 SCR 选择性催化还原 UDDS-HD 重型城市测功机 驾驶时间表 ZEV 零排放汽车
摘要帕金森氏病(PD)是一种复杂的疾病,源于遗传和环境因素。目前的研究努力研究了暴露于有机氯(OCP)和有机磷酸盐农药(OPPS)的作用,被认为是主要环境因素,在PD的起源中。涉及29名PD患者和51名健康受试者。气相色谱法测量有机氯化学物质的血清水平(2,4-DDT,4,4-DDT,2,4-DDE,4,4-DDE,α-HCH,β-HCH,β-HCH和γ-HCH)。此外,评估了乙酰胆碱酯酶(ACHE)活性,副酶-1(PON-1)的芳基酶活性和几种氧化应激(OS)标记。PD患者的OCP水平明显高于对照组受试者。另外,PD患者的ACAE活性,PON-1的芳基酶活性,过氧化氢酶的活性和超氧化物歧化酶3活性明显小于对照组。然而,PD患者的羰基蛋白水平,总抗氧化能力,丙二醛和一氧化氮水平高于对照组。这项调查的结果表明,OCP和OPP暴露可能有助于帕金森氏病的发展。可以通过这些农药对神经系统的直接影响来建立这种潜在的联系,从而导致神经毒性,或者通过通过OS触发的间接途径来建立。
假单胞菌具有代谢灵活性,可以在不同的植物宿主上茁壮成长。然而,宿主滥交所需的代谢适应性尚不清楚。在这里,我们通过采用 RNAseq 并比较东湖假单胞菌 P482 对两种植物宿主(番茄和玉米)根系分泌物的转录组反应来弥补这一知识空白。我们的主要目标是找出这两种反应之间的差异和共同点。仅由番茄分泌物上调的途径包括一氧化氮解毒、铁硫簇的修复、通过对氰化物不敏感的细胞色素 bd 进行呼吸以及氨基酸和/或脂肪酸的分解代谢。前两个表明测试植物的分泌物中存在 NO 供体。玉米特异性地诱导了 MexE RND 型外排泵的活性和铜耐受性。与运动相关的基因由玉米诱导,但被番茄抑制。对渗出液的共同反应似乎受到来自植物的化合物和来自其生长环境的化合物的影响:砷抗性和细菌铁蛋白合成上调,而硫同化、柠檬酸铁和/或其他铁载体的感知、血红素获取和极性氨基酸的运输下调。我们的研究结果为探索植物相关微生物的宿主适应机制提供了方向。
方法:将雄性 Sprague Dawley 大鼠随机分为两组,并让其接受不同的饮食 20 周(每组 n = 6)。一组大鼠喂食标准大鼠饲料作为非糖尿病前期 (NPD) 对照,而另一组大鼠则食用高脂肪高碳水化合物饮食以诱发糖尿病前期 (PD)。诱发后,使用稳态模型评估 - 胰岛素抵抗 (HOMA-IR) 和糖化血红蛋白 (HbA1c) 来检测胰岛素抵抗。测量体重、平均动脉压(MAP)、静息心率(HR)、炎性细胞因子(C反应蛋白(CRP)、肿瘤坏死因子(TNF-α)、白细胞介素6(IL-6))、脂质(总胆固醇(TC)、甘油三酯(TG)、脂蛋白(HDL、LDL、VLDL))、内皮功能(内皮型一氧化氮(eNOS)、内皮素-1(ET-1))、纤维蛋白溶解(纤溶酶原激活剂抑制剂-1(PAI-1))以评估CHD风险。所有数据均以平均值±SEM表示。使用Graph Pad进行统计比较。Instat软件使用Student双侧t检验。计算Pearson相关系数和线性回归以评估关联。p < 0.05的值被认为具有统计学意义。
这些过程包括氧化、烷基化、水解和碱基错配。在碱基氧化过程中,会产生高活性化学实体,统称为 RONS。RONS 代表活性氧和活性氮物质,包括一氧化氮、超氧化物、羟基自由基、过氧化氢和过氧亚硝酸盐。许多研究表明,RONS 会导致各种问题,包括 DNA 损伤 (1)。8-羟基鸟嘌呤、8-羟基-2'-脱氧鸟嘌呤和 8-羟基鸟嘌呤都是氧化损伤的 RNA 和 DNA 标记。8-羟基-2'-鸟嘌呤是由活性氧和活性氮物质产生的,包括羟基自由基和过氧亚硝酸盐。具体而言,它的高度生物学相关性是由于它能够诱导 G 到 T 颠换,这是最常见的体细胞突变之一 (2)。8-羟基鸟嘌呤是研究最多的 DNA 碱基损伤类型,在糖尿病和癌症方面都有研究。这种类型的碱基修饰源自自由基诱导的嘌呤环羟基化和裂解反应(3、4)。最后,8-羟基鸟苷与 8-羟基-2'-鸟苷一样,可诱导 DNA 中 G 向 T 的突变转换。其作用已在糖尿病、高血压和中风的发展中得到验证(5、6 和 7)。
蛋白质印迹分析显示,人类冠状动脉(≤30 岁、≥58 岁)和小鼠主动脉(3 周龄、65 周龄、109 周龄)中层蛋白 A/C 表达随年龄而下调。小鼠主动脉的流式细胞术分析显示,层蛋白 A/C 下调发生在内皮细胞 (EC) 和血管平滑肌细胞中,但不发生在外膜细胞中。EC 特异性层蛋白 A/C 消融(Ldlr-/- Lmnaflox/floxCdh5-CreERT2)的小鼠表现出出生后生长缺陷、动脉收缩压升高和寿命缩短。此外,这些小鼠的主动脉环显示内皮依赖性血管舒张功能受损,与 12 周龄对照组相比,野生型 114 周龄小鼠也观察到了这种情况。超声心动图研究显示,年轻和年老的 Ldlr-/- Lmnaflox/floxCdh5-CreERT2 小鼠均存在舒张功能障碍,这与心脏胶原沉积增加和血清 NT-proBNP 水平升高有关。高通量组学研究显示 Ldlr-/-Lmnaflox/floxCdh5-CreERT2 小鼠的几个生物过程发生了改变,表明存在内皮功能障碍,包括 Nos3 表达减少和一氧化氮信号通路中断。
摘要:热层是地球大气中最大的部分,并且由于它在如此高的高度(120-3000 km)的范围内,气态活性和分子数密度,每单位立方体的分子量,与大气层层相比,每单位立方体的分子数量,每单位单元的分子量变得难以测量和观察。为了解决此问题,我们可以咨询基本的化学动力学,以试图计算不同分子的稳态模型。气态颗粒在热层中的反应和相互作用都构成了一个系统,因此,简单模型的构建将有助于我们进一步研究和理解上层大气中发生的情况,使用我们已经知道的反应,并且可能揭示了我们不知道的某些气态行为。在我的项目中,我们特别希望构建一氧化氮数量密度填充物的稳态模型,因为它参与了许多光化学反应,从而导致其形成和变形。在动力学之外还需要咨询其他因素,在大气中进行了这种扩散的混合,但是可以使用为大气系统(称为Vulcan)构建的软件来咨询这些因素。我正在与詹姆斯·里昂(James Lyons)博士合作,以计算该模型并发展我对地球上层大气层的概念理解,并将该模型作为比较热层中一氧化氮浓度的比较的参考。
燃料类型数量压缩天然气(CNG)326 27%柴油896 73%混合动力1 0%新的和新兴的公共交通理事会中的公共交通技术目前运营着一支超过1200辆公共汽车的公共汽车车队,并替换了大约60辆公交车。自2017年7月以来,理事会已承诺所有新公共汽车将符合欧元VI柴油排放标准或更高。欧元VI排放标准高于欧元V的澳大利亚最低标准,但每巴士的成本约为20,000美元。与欧元V标准相比,欧洲VI排放标准的好处是排气微粒降低了66%,一氧化氮降低了80%,导致空气质量的提高。新的欧元VI柴油巴士将取代老年欧洲III和IV CNG巴士。在接下来的8 - 10年中,所有CNG公共汽车将从理事会的舰队中退休。理事会正在敲定电动巴士试验的招标。理事会正在寻求一种电动巴士解决方案,该解决方案在公交车站“通宵”收费,并能够单一收费完成一整天的服务。预计将在2020/21财政年度的第一季度宣布成功的招标。电动巴士面临三个关键挑战:
心肌梗死 (MI) 是世界范围内的重要死亡原因 [1]。由于现代治疗选择,MI 的死亡率一直在下降,MI 幸存者的数量也在不断增加 [2]。其中许多人随后出现心力衰竭 (HF) 的症状 [3,4]。心肌细胞因缺血死亡后,HF 的发展与不良的左心室重塑有关,导致功能丧失 [5,6]。高脂饮食 (HFD) 可通过心脏肥大、心肌细胞凋亡和间质纤维化等机制加剧 MI 后的重塑 [7,8]。实验研究表明,HFD 显著加剧老年大鼠的高血压心脏病,导致心房和心室重塑恶化以及相关的左心室收缩功能受损 [9]。此外,仅 12 周的 HFD 就会对心脏功能产生不利影响,这通过左心室斑点追踪成像 [10] 进行测量,该参数能够检测亚临床左心室。不幸的是,最近的临床研究表明,人类高脂肪产品的消费量一直在稳步增加 [11]。在 HF 的背景下,人们对亚硝化/氧化应激、炎症和内质网应激进行了很多讨论 [12-15]。然而,对于 HFD 对 HF 中这些过程的影响知之甚少。亚硝化/氧化应激是指当氧代谢紊乱时,一氧化氮 (NO) 和活性氧物质之间的生化反应。该过程导致活性氮物质 (如过氧亚硝酸根阴离子) 的产生,从而导致蛋白质硝化和损伤 [16]。这种损伤的标志是 3-硝基酪氨酸 (3-NT) [17]。一氧化氮合酶 (NOS) 催化一氧化氮的产生,一氧化氮合酶有三种亚型:诱导型一氧化氮合酶 (iNOS)、内皮型一氧化氮合酶 (eNOS) 和神经元型一氧化氮合酶 (nNOS) [18]。这些亚型在心血管健康和疾病中发挥着至关重要的作用。iNOS 在正常心脏组织中的表达水平非常低 [19]。炎症会导致 iNOS 活化和过表达,这会对心脏造成有害影响,而转基因动物中 nNOS 和 eNOS 的过表达会改善心肌梗死后的心脏功能 [20]。髓过氧化物酶 (MPO) 在炎症反应中起着至关重要的作用 [21]。它主要在中性粒细胞和单核细胞中表达。MPO 催化产生次氯酸,一种强效氧化剂 [22]。此外,这种蛋白质还可以直接参与活性氮物质的形成。循环中 MPO 水平升高与炎症和氧化应激有关 [ 23 ]。此外,最近的荟萃分析表明 MPO 可作为 HF 诊断的有价值标志物 [ 24 ]。当错误折叠或未折叠的蛋白质压倒内质网(内质网是蛋白质折叠和脂质生物合成的关键细胞器)时,就会发生内质网应激。如前所述,亚硝化/氧化应激会影响蛋白质折叠过程并导致内质网应激 [ 25 , 26 ]。后者会激活未折叠蛋白反应 (UPR),这是一种复杂的信号网络,旨在恢复蛋白质稳态或在不可能的情况下促进细胞凋亡。该过程在
领域内总引用次数(科学信息研究所/ISI) 2010- 过去十年中,位列药理学和毒理学领域全球被引用次数最多的前 100 名(ISI) 2010- 过去十年中,位列临床医学、生物学和生物化学领域被引用次数最多的前 1%(ISI) 2011 年 6 月- 当选为美国心脏病学会院士 2011 年 - 被 AJP Cell Physiology 编辑评选为“明星审稿人”(2011 年 FASEB 会议公布) 2011 年 1 月- 德克萨斯大学医学分校麻醉学系兼职教授 2011- 美国国家癌症研究所 (NCI) 癌症氧化还原生物学学院指导委员会成员 2008 - Sanofi Aventis 奖 2007- Thomson ISI,药理学领域的突破性论文:P Pacher、S Batkai、G Kunos。内源性大麻素系统作为药物治疗的新兴靶点。药理学评论 2006;9 月;58(3):389-462。(被引用超过 2650 次(Google 学术搜索),2006-2009 年药理学领域被引用次数最多的第 5 篇论文,Scopus)。药理学评论史上最热门的论文(Altmetrics 得分 1078)。2007 - ISI:生物化学热门论文;2007 年以来生理学评论中被引用次数最多的论文:P Pacher、JS Beckman、L Liaudet。一氧化氮和过氧亚硝酸盐与健康和疾病的关系。生理学评论 2007; 1 月;87(1):315-424(被引用超过 7600 次(谷歌学术);#2 生物学/生物化学领域被引用次数最多的论文,Essential Science Indicators,Thomson 2009;被《Physiological Reviews》编辑评选为 2008、2009、2010、2011 年最热门论文);跻身《Physiological Reviews》有史以来被引用次数最多的前 5 篇论文之列。 2006/2007 - 4 项 NIH/NIAAA 出版物奖 2006- 当选美国心脏协会会员 2006 - 当选美国生理学会心血管分会会员 2004 - 最佳海报奖,国际心脏研究学会,澳大利亚布里斯班 2004- 日本奈良一氧化氮学会奖 2004- 美国国立卫生研究院,贝塞斯达研究卓越奖 2000-2001 青少年糖尿病协会博士后奖学金奖 1999- Sigma-Aldrich 研究奖 1999- 匈牙利药理学会青年研究人员竞赛奖 TEVA-Biogal 制药公司最佳中枢神经系统药物开发方案科学研究奖,匈牙利布达佩斯 1998- 国际妊娠高血压研究学会(ISSHP)青年研究员奖日本神户 1997-1999 年:匈牙利药理学会青年研究员竞赛奖。旅行奖: 1997-1999 年:ISSHP 旅行奖;索罗斯基金会旅行奖;匈牙利药理学会旅行奖