摘要:由钾和一氧化碳制成的凝结相的计算探索导致预测由环状六元的氧化碳阴离子和K +阳离子组成的稳定盐,k n(C 6 O 6)m。在半导体和金属相中,这些系统中的降低状态范围很大,C 6 O 6分子正式降低-2,-3,-3.5和-6。特别关注K 3 C 6 O 6,其中三分激发的激进阴离子在一维中紧密且平衡地堆叠。自由基的等距相互作用极为罕见,通常由于自发的对称性破坏,PEIERLS或JAHN-TELLER失真而不稳定。K 3 C 6 O 6的显着例外是通过相互间隔的多中心键(也称为煎饼键)与大离子拒绝的相结合来解释的。这种引人入胜的相互作用促进了在费米水平上极高的状态密度,并导致我们预测极端金属性,电阻率的负温度系数以及在环境压力条件下的稀有π波段超导率。这些预测振兴了使用金属盐的分子设计来搜索新的有机导体和超导体。
这项研究本周(2024年4月25日)在本质上发表,详细介绍了由安德烈·吉姆(Andre Geim)教授,朱利安·巴里埃(Julien Barrier)博士和纳Xin博士领导的曼彻斯特团队的广泛工作,以在量子厅政权中实现超导性。他们的最初努力遵循传统的途径,在传统途径中,反向传播的边缘彼此靠近。但是,这种方法被证明是有限的。
在本文中,我们提出了一种一维量子电动力学 (QED) 的离散时空公式,以量子细胞自动机 (QCA) 的形式表示,其本质上是局部量子门的平移不变电路。从实用角度来看,QCA 定义了一种用于相互作用 QFT 动力学的量子模拟算法(不过,先不考虑状态准备和测量问题)。但是,从理论角度来看,它也构成了一个原理证明,表明相互作用 QFT 的原生离散公式是可能且优雅的。在此图中,QFT 被定义为 QCA 的“收敛”序列,由时空格子间距参数化——与连续极限和重正化的概念相呼应。我们讨论了为什么我们希望以这种方式规避 QFT 标准公式的一些技术问题。这种构造直观,几乎不需要任何先决条件。它基于量子信息概念,建立了一个简单、可解释的量子场论模型。鉴于量子场论可能相当复杂,我们认为这也构成了重要的教学资产。
摘要:铯134和-137在核事故期间普遍存在,长期寿命,可射线毒性污染物释放到环境中。在福岛daiichi核事故期间,大量不溶性,可呼吸CS的微粒(CSMP)释放到环境中。对环境样品中CSMP的监测对于了解核事故的影响至关重要。用于筛选CSMP的当前检测方法(磷光筛查放射自显影)慢效。我们提出了一种改进的方法:使用平行电离乘数气态检测器的实时放射自显影术。该技术允许对放射性的空间解决测量值,同时从空间异质样品中提供光谱数据,一种潜在的级别变化技术,可用于核事故后用于法医分析。使用我们的检测器配置,可检测到CSMP的最小可检测活动足够低。此外,对于环境样品,样品厚度不会对检测器信号质量造成不利影响。检测器可以测量和解决相距≥465μm的单个放射性颗粒。实时放射自显影是放射性颗粒检测的有前途的工具。
周期性晶格中的拓扑界面状态已成为电子,光子学和语音原理中的宝贵资产,这是由于它们固有的鲁棒性对障碍的固有性。与电子和光子学不同,Hypersound的线性分散关系为研究高阶带盖提供了理想的框架。在这项工作中,我们提出了一种设计策略,用于在GAAS / ALAS多层结构的高阶频带中生成和操纵拓扑纳米式界面状态。这些状态来自两个串联超晶格的频带反转,它们在带隙周围表现出倒置的空间模式对称性。通过调整这些超晶格中的单位单元的厚度比,我们能够在不同的带盖中设计界面状态,从而使能够开发跨越频率范围的多功能拓扑设备。此外,我们证明了此类界面状态也可以在混合结构中生成,这些结构将两个超晶格与以相同频率为中心的不同订单的带盖相结合。这些结构为探索高阶带盖中拓扑结构的途径开辟了途径,为揭幕和更好地理解复杂的拓扑系统提供了一个平台。
一维粒子模拟 (PIC) 用于分析新视野号绕冥王星太阳风 (SWAP) 仪器在距离太阳约 34 天文单位处观测到的行星际激波上游区域测得的能谱。使用单个种群模拟不同的太阳风离子 (SWI) 和拾取离子 (PUI) 种群,我们可以清楚地识别出每个种群对全球能谱的贡献。强调了激波前沿倾斜度在沿磁场流回远离前沿的上游区域的 PUI 形成中的重要作用。在本模拟中可以很好地恢复 SWAP 实验测得的能谱。详细分析表明:(1) 能谱的最高部分主要由回流的 PUI-H + 和 PUI-He + 形成; (2) 能谱的中间部分由太阳风 SW-H + 和 SW-He 2+ 入射离子组成,这些离子叠加在 PUI-H + 粒子群上,(3) 低能范围由入射 PUI-H + 组成。使用 PUI-H + 粒子群的初始填充壳分布(而不是零厚度壳),可以提高实验结果与模拟结果之间的一致性,因为这会强烈影响光谱的低能部分。这意味着 PUI-H + 离子在日光层中首次被拾取后,有足够的时间扩散到壳分布并填充壳分布,这表明随后的冷却对全球能谱有重要影响。
在汽车电子领域,实现高设备可靠性是一项基本要求。操作典型的汽车负载(例如灯泡或伺服电机)会给设备本身带来很大的热应力,因为这些负载具有高浪涌电流、长关断时间和高电感。因此,切换这些负载意味着高开关损耗、长时间的开启和关闭瞬态以及严重的过热。开关将循环数千次甚至数百万次,相应的功率循环将引起热机械性能下降,最终导致电气故障。因此,有必要正确模拟此类功率循环以提高设备可靠性并了解故障机制,特别是准确的热模型是得出所有后续电热和热机械结论的第一步。
图6。(a)由DY3+离子和无bragg镜子的单个DY3+掺杂的活性层(参考)激活的微腔的光致发光光谱。插图:激发激光的光谱。(b)与没有bragg镜的参考样品相比,微腔的发光强度的入射角依赖性。
尽管有许多 1D 水力模型(例如 ISIS、Mike 11、SOBEK 等),但 HEC RAS 被选为本研究的模型。HEC RAS(河流分析系统水文工程中心)是由美国陆军工程兵团开发的 1D 水力模型,旨在在多任务、多用户网络环境中交互使用(GWBrunner,2010 年)。与其他高维模型相比,该模型具有良好的文档记录、用户友好性,并且计算时间更短(Pappenberger 等人,2005 年)。最近发表的科学文献表明,1D 水力模型非常适合重现自然河流和城市集水区中的洪水传播(Alho 和 Aaltonen,2008 年;Horritt 和 Bates,2002 年;Leandro 等人,2009 年)。
4 这些作者贡献相同 *通信地址:muhaoran@sslab.org.cn (HM);linshenghuang@sslab.org.cn (SL) 收稿日期:2024 年 9 月 11 日;接受日期:2024 年 12 月 16 日;在线发表日期:2024 年 12 月 23 日;https://doi.org/10.59717/j.xinn-mater.2024.100113 © 2025 作者。这是一篇根据 CC BY 许可开放获取的文章 (https://creativecommons.org/licenses/by/4.0/)。引用:Wang P.、Mu H.、Yun T. 等人 (2025)。1D-2D 横向范德华异质结中的高整流和栅极可调光响应。创新材料 3:100113。自钝化表面和减少的隧穿漏电流使得在范德华 (vdW) 半导体异质结中创建理想的肖特基接触成为可能。然而,同时实现高整流比、低反向漏电流和快速光响应仍然具有挑战性。在这里,我们提出了一种一维 (1D)/二维 (2D) 混合维异质结构光电二极管来解决这些挑战。该结构中显著的价带偏移和最小的电子亲和能差异确保了高整流比和高效的电荷收集。此外,1D 和 2D 材料之间的尺寸差异,其特点是接触面积较小和厚度差异显著,导致低反向漏电流和高电流开关比。此外,它能够实现栅极可调的能带结构转变。我们的器件在室温下表现出 4.7 × 10 7 的出色整流比和 5 × 10 7 的高开关比(V ds = 2 V 和 V g = 30 V)。在 20 V 的栅极电压下,光电二极管实现了 4.9 × 10 14 Jones 的比探测率 (D * )、14 μs 的快速响应时间和接近 1550 nm 的扩展工作波长。混合维度设计和能带工程的战略组合产生了具有出色灵敏度、可重复性和快速响应的 1D-2D pn 异质结光电二极管,凸显了 vdW 半导体在先进光电应用方面的潜力。
