运动,一维,均匀和不均匀的运动,均匀加速运动;标量和向量,向量的分辨率,向量属性。运动,弹丸运动,均匀的圆形运动。牛顿的运动定律,线性动量的保护,摩擦;工作能量定理,动能,势能,能量保存;一个和二维的弹性碰撞。颗粒系统的质量中心,刚体的质量中心,旋转运动和扭矩,角动量及其保守,其惯性矩,各种几何形状,平行和垂直轴定理。引力的普遍定律,由于重力而加速,行星运动,开普勒定律,卫星,重力潜力和势能以及逃逸速度。
薄壁结构 – 机翼;机身;尾翼;薄壁近似。金属材料 – 材料化学;成型;轻质合金;超级合金。复合材料 – 混合规则;层压板理论;制造;功能复合材料。航空航天结构部件分析 – 弯曲;剪切;扭转;组合载荷;应力;扭转角;挠度;疲劳;断裂。无损检测 – 超声波检测;压电换能器;导波检测;相控阵扫描;结构健康监测。有限元分析 – 一维元素;二维元素;三维元素;高阶元素;静态分析;动态分析。
摘要:近年来,量子计算 (QC) 在流体动力学模拟中的应用已发展成为一个动态研究课题。由于许多科学和工程领域中的流动问题需要大量计算资源,因此 QC 加速模拟和促进更详细建模的潜力成为这一研究兴趣日益增长的主要动机。尽管取得了显著进展,但在创建流体建模的量子算法方面仍然存在许多重要挑战。本文在基于格子的流体建模背景下研究了流体建模中控制方程的非线性这一关键挑战。详细介绍了 D1Q3(一维,三个离散速度)格子玻尔兹曼模型的量子电路以及涉及电路宽度和深度的设计权衡。然后,将设计扩展为非线性 Burgers 方程的一维格子模型。为了便于评估非线性项,所提出的量子电路采用量子计算基编码。本研究的第二部分介绍了一种用于多维晶格模型中非线性项的新型模块化量子电路实现。具体而言,详细介绍了二维模型中动能的评估,这是二维和三维格子玻尔兹曼方法碰撞项量子电路的第一步。量子电路分析表明,利用 O (100) 容错量子比特,可以在不久的将来进行有意义的概念验证实验。
一维次波长光栅(也称为Metratings)由于具有多功能应用电位的相对简单的设计配置而引起了极大的关注。最近,这些元元素在Terahertz频域中扮演着至关重要的角色,以实现几种引人入胜的效果。已经证明,可以通过仔细设计光栅几何形状以及对材料特性进行仔细调整,可以通过仔细设计光栅几何形状来修改这些元元的特征。光栅设计中的这种变化导致了设备性能的增强。此外,设计合适的Metratings能够令人兴奋的强烈的Evanescent订单,可以在ul敏感的传感,光学诱捕,非线性等中利用。基于平面地理版本(易于制造)以及各种公用事业所提供的巨大潜力,我们审查了本文中与Terahertz Metagratings有关的代表性作品。因此,我们已经讨论了基于群体的抗反射涂层和使用简化模型方法建模的THZ区域中运行的极化光束分离器。此外,我们已经讨论了利用傅立叶转化的Terahertz光谱(FTTS)技术激发的元流中的evanevancent波的实验探测。ftts是一种独特的技术,因为它具有同时检测传播和非传播顺序的能力。接下来,我们讨论了Metagratings在传感痕量分析物中的应用。考虑到这些一维人工次波长结构中的不断增长,我们认为,我们的文章将对愿意开始在Terahertz亚波长度上工作的搜索者有用。
一维 HEC-RAS 在复杂河网中的洪水演算非稳定流中被广泛使用和熟知(Baldassarre 和 Montanari,2009),并且还有一个好处,就是它可以在互联网上免费获取。SOBEK-RURAL 在流体动力学计算中使用完整的圣维南方程,是一种在水力洪水演算中执行 1D 和 2D 非稳定流分析的有效软件(Deltares,2010)。此外,Deltares 免费为本研究工作提供 SOBEK-RURAL,即使它不是免费提供的。由于这些原因,1D HEC-RAS 和 1D2D SOBEK-RURAL 用于本研究工作,但是有许多可用的水力和水文建模软件程序。
讲座总数:42 讲座分类 讲座数 1. MOS 电容器:金属-氧化物-半导体接触的能带图,操作模式:积累、耗尽、中间带隙和反转,MOS 的一维静电,耗尽近似,泊松方程的精确解,MOS 的 CV 特性,LFCV 和 HFCV,MOS 中的非理想性,氧化物固定电荷,界面电荷,中间带隙栅极电极,多晶硅接触,非均匀衬底掺杂的静电,超薄栅极氧化物和反转层量化,量子电容,MOS 参数提取
光锥体现了物理学中最基本的原理之一:因果关系。在构建描述自然界基本相互作用的模型时,基本要求之一是光锥的存在。事实上,人们已经认识到它们的出现是量子场的相对论不变性的结果 (1)。有趣的是,有几个系统的有效动力学是相对论不变的,有效光锥也发挥了作用。最近的实验表明,有效光锥确实会出现在冷原子气体中 (2, 3)。为了直接观察这些光锥,必须克服几个实验挑战,包括在精细长度尺度上解析系统并测量能够揭示它们的相关可观测量。解决这些问题是设计量子模拟器的更大研究工作的一部分 (4-7)。例如,操纵一维隧道耦合气体可以模拟具有基础重要性的原型场论(8–11),但也可以捕获纳米线中的电荷传输(12)。在这里,我们的目标是使用这个量子模拟器通过实验探索其在非均匀或弯曲度量中模拟动力学的潜力。类似的目标一直是模拟重力系统(13,14)的重点,该系统最近在使用冷原子系统模拟黑洞(15,16)或宇宙学(17–19)过程方面非常成功。在这项工作中,我们研究了非均匀一维量子气体中的关联传播。我们表明,关联前沿遵循模拟声学度量的测地线,并发现传播速度的空间依赖性与理论建模一致。我们观察相关前沿的弹道传播,并讨论这些相关前沿的详细形状、系统边界的反射和周期性复发。
心血管疾病在现代社会中仍然是一个重要的问题。在非侵入性技术中,心电图(ECG)是检测心脏活动异常的最可靠方法之一。但是,ECG的解释需要专家知识,而且耗时。开发一种新的方法来早期检测疾病可以预防死亡和并发症。本文介绍了从心电图录音中分类心脏疾病的新颖方法。第一种方法表明,庞加莱的ECG信号和基于深度学习的图像分类器(Resnet5050和Densenet121是通过Poincaré图中学到的),这在预测AF(心理纯正)中表现出了体面的性能,但没有其他类型的心灵。Xgboost是一种梯度增强模型,在长期数据中表现出可接受的性能,但由于高度消耗的计算Wihtin在预处理阶段,因此具有很长的时间。最后,一维卷积模型(特别是1D Resnet)在所研究的CINC 2017和CINC 2020数据集中表现出了最佳结果,分别达到了F1分别达到85%和71%的F1分数,这比每个挑战的第一级解决方案都优于每个挑战的解决方案。本文还研究了效率指标,例如功耗和等效的CO2排放,其中一维模型(如1D CNN和1D Resnet)是最能量的效率。模型解释分析表明,Densenet使用心率变异性检测到AF,而1DRESNET评估了原始ECG信号中的AF模式。
我们提出了一种新的测量方法:相机信息容量,它以克劳斯·香农于 1948 年和 1949 年发表的开创性信息论著作 [1],[2] 为基础,该著作是现代电子通信的基础,但对成像科学家来说仍然陌生。香农表明,每个通信信道(可以用带宽和噪声来表征)都有一个信息容量,它决定了它在无错误传输数据的最大速率。相机就是这样一种通信信道,尽管有一点不同:它将数据传输到二维像素而不是一维时间。由于机器视觉背后的算法基于信息而不是像素,因此相机的信息内容对系统性能至关重要。
经过简短的历史审查,我们将从波浪力学的角度介绍量子理论的基础。这包括对波函数,概率解释,操作员和schrödinger方程的讨论。然后,我们将考虑简单的一维散射和绑定的状态问题。接下来,我们将涵盖从更现代的角度进行量子力学所需的数学基础。我们将回顾矩阵力学和线性代数的必要元素,例如查找特征值和特征向量,计算矩阵的痕迹,并找出矩阵是遗传学还是单位。然后,我们将介绍狄拉克符号和希尔伯特的空间。然后,量子力学的假设将被形式化并用示例进行说明。