在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
我们提出了G en 3c,这是一种具有精确的C amera c onTrol和暂时3D C的生成视频模型。先前的视频模型已经生成了现实的视频,但是它们倾向于利用少量3D信息,导致不一致的情况,例如弹出和不存在的对象。相机控制(如果完全实现)是不精确的,因为相机参数仅是对神经网络的输入,然后必须推断视频依赖相机。相比之下,G en 3c由3D缓存:通过预测种子图像的像素深度或先前生成的框架获得的点云。生成下一个帧时,G en 3c由用户提供的新摄像头轨迹在3D缓存的2D渲染上进行条件。至关重要的是,这意味着G en 3c都不必须记住它的预期
本文的目的是研究代理人行为规则中复杂程度的不同程度如何影响个人和宏观经济的表现。,我们分析了引入基于代理的宏观模型企业的效果,该公司能够通过使用简单的机器学习算法来制定有效的销售预测。这些技术能够提供公正的预测并具有一定程度的准确性,尤其是在遗传算法的情况下。我们观察到机器学习允许企业可以增加利润,尽管这会导致工资份额下降和长期长期增长率较小。预测方法能够提出期望,这些期望在冲击不大时保持公正,因此提供了预测能力,在一定程度上可能与卢卡斯的批评一致。关键字:基于代理的模型,机器学习,遗传算法,预测,政策冲击。JEL分类:C63,D84,E32,E37。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
罗马2025年2月28日。政府今天早些时候在罗马同意了筹集保护生物多样性所需的资金并实现Kunming-Montreal全球生物多样性框架(KMGBF)所需的资金,使联合国生物多样性会议的业务使COP16在2024年在哥伦比亚悬挂在COP16,于2024年取得了成功。《生物多样性公约》的当事方进入了清晨,以敲定有关生物多样性财务,计划,监测,报告和审查的协议,以及衡量全球和国家进步的全套指标,以实施KMGBF,在2022年在COP 15中在蒙特利尔达成的KMGBF。“这些天在罗马的工作已经证明了当事方对全球生物多样性框架的实施的承诺。警察16总统承认达成共识的集体努力,这些问题在卡利列出了关键问题。“我们感谢所有国家和公约秘书处继续加强全球生物多样性议程的意愿。只有通过共同努力,我们才能使自然和平成为现实。” “这次会议的结果表明,多边主义有效,是建立保护生物多样性所需的伙伴关系的工具,并使我们与自然和平相处。”“我们现在有明确的任务要求实施第21和39条。当我们这样做并实施资源动员的其他支持元素时,世界将为自己提供缩小生物多样性融资差距的手段。”
摘要非convex优化的主要挑战是找到一个全局最佳的挑战,或者至少要避免“不良”本地最小值和毫无意义的固定点。我们在这里研究算法与优化模型和正则化相反的程度可以调整以实现这一目标。我们认为的模型是许多局部最小值的非概念,不一致的可行性问题,在这些点上,这些点之间的差距在这些点的附近最小。我们比较的算法都是基于投影的算法,特别是环状投影,环状放松的Douglas-Rachford算法以及放松的Douglas-Rachford在产品空间上分开的。这些算法的局部收敛和固定点已经在详尽的理论研究中表征。我们在轨道分辨光子发射光谱(ARPES)测量的轨道层析成像的背景下演示了这些算法的理论,这些理论都是合成生成和实验性的。我们的结果表明,虽然循环投影和循环恢复了Douglas-Rachford算法通常会汇聚最快,但重新使用Douglas-Rachford在产品空间上划分的方法确实从其他两个算法的不良本地算法中移开,最终从其他两个算法中掌握了当地最小值的群库,与全球范围的群体相关点,以确定了与全球范围相对应的群体的关键点。
知识蒸馏(KD)旨在将知识从大型教师模型转移到较小的学生模型。虽然对比学习通过创建歧视性表示表现出了在自我监督学习中的希望,但其在知识蒸馏中的信息仍然有限,并且主要涉及歧视,忽略了教师模型捕获的结构关系。为了解决这一限制,我们提出了d Iscriminative and C On Consistent d Istillation(DCD),它采用了对比损失以及一致性正规化,以最大程度地减少教师和学生代表分布之间的差异。我们的方法引入了在训练过程中适应这些互补目标的可学习温度和偏置参数,以取代对比度学习方法中常用的固定超平衡器。通过CIFAR-100和Imagenet ILSVRC-2012的广泛实验,我们证明DCD实现了状态的表现,学生模型有时会超过教师的准确性。此外,我们表明DCD的所学表示形式将转移到小型成像网和STL-10 1时表现出较高的跨数据集泛化。
1个国家中心,我的道路,大学,de toulouse,Me´te´o-France,CNRS,CNRS,Toulouse,法国,法国,2气象学系和国家雷丁大学的世界地球观察中心,英国雷丁大学,英国,3个Grupo de grupo de grupo deIngenierı” De Antioquia大学,梅德利大学,哥伦比亚,4大都会办公室,哈德利中心,埃克塞特,英国,5个全球系统研究所,埃克塞特大学,埃克塞特大学,英国埃克塞特大学,英国6号,伦敦大学,隆德大学,伦敦大学,伦敦大学,伦敦大学,瑞典7个国家研究委员会,意大利国家研究委员会,大气科学和cnria duvi efi nazia vusia duviia duviia duviia duviria duviia duviiia duviia duvitutia duviiia duviia duvitutiatia duvitutia和(INGV),意大利博洛尼亚,印度新德里8号国际水管理学院/CGIAR,印度9印度热带气象学院,浦那,马哈拉施特拉邦,印度马哈拉施特拉
“ EMI感到失望的是,苏格兰政府并没有更积极地锁定Holyrood的立法程序,这是对使用自己的权力的更强有力的承诺,并敦促英国部长确保新英国立法与欧洲保持一致,并且随着法规的发展,它不会在原则上或不遵守EU Law of aud>
现有文献表明,计算机模拟可以揭示微观个体的特征如何引起系统整体的宏观现象。本文旨在将这种重要的基于模拟的观察结果建立在坚实的基础上,作为理论结果。本文不仅探讨整体现象何时可以自然地从微观特征中产生,还探讨了许多宏观实体如何以及为何似乎通过将微观主体有机地聚集到统一导向的运作整体中来响应市场呼声,即使这些主体的利益不一致甚至相互冲突。本文根据系统科学的结果得出结论,并建立了一个充分条件,在此条件下,微观主体的特征可以自然地导致系统整体的宏观特性的出现,即使前者是异质的并且表现为