这些规则表明,某个符号可以通过一系列其他符号在树中扩展。根据一阶逻辑规则,如果有两个字符串名词短语 (NP) 和动词短语 (VP),则由 NP 和 VP 组合而成的字符串是一个句子。句子的重写规则如下 -
摘要。本文说明了损失功能在数据驱动决策中的核心作用,从而对其在成本敏感的分类(CSC)和增强学习(RL)方面提供了全面的调查。我们演示了不同的回归损失函数如何影响样本的效率和基于价值决策算法的适应性。在多个设置中,我们证明,使用二进制跨透镜损失的算法达到了最佳策略成本的第一阶范围,并且比常用的平方损失更有效。此外,我们证明,使用最大似然损失的分布算法与策略差异达到了二阶范围,甚至比一阶边界更明显。这特别证明了分歧RL的好处。我们希望本文能够成为分析具有不同损失功能的决策算法的指导,并可以激发读者寻求更好的损失功能,以改善任何决策算法。
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
在二维电子系统中,由于远距离库仑相互作用而禁止直接一阶相变,这意味着宏观相位分离的僵硬惩罚。一个突出的建议是,任何直接的一阶转变都被一系列“微乳液”阶段取代,其中两个阶段以中镜域的模式混合在一起。在这封信中,我们评论了这种微乳液阶段可能占据的平均电子密度范围。我们指出,即使不知道与两个阶段之间表面张力相关的现象学参数的值,也可以将相当强的上限放在n的值上。,在费米液体对WIGNER晶体过渡的情况下,我们对N进行N的数值估计值,并将N的数值估计为10 7 cm -2。该值比在实验中观察到的相变宽度要小得多,这表明疾病更可能是对过渡的明显拓宽的解释。
摘要:贝叶斯优化(BO)在大量控制应用程序中对昂贵的黑盒功能进行全局优化的数据效果表现出了巨大的希望。传统的BO是无衍生的,因为它仅依赖于性能函数的观察来找到其最佳。最近,已经提出了所谓的第一阶BO方法,该方法还将绩效函数的梯度信息进一步加速收敛。一阶BO方法主要利用标准采集功能,而间接使用内核结构中的梯度信息来学习性能功能的更准确的概率替代物。在这项工作中,我们提出了一种直接利用性能函数(Zeroth-order)及其相应梯度(第一阶)评估的梯度增强的BO方法。为此,提出了一个新型的基于梯度的采集功能,可以识别性能优化问题的固定点。然后,我们利用从多目标优化的想法来制定一种e显策略,以找到最佳贸易点的查询点,这些查询点是传统的Zeorth-rorder-rorde获取功能与拟议的基于梯度的采集函数之间的。我们展示了如何使用拟议的获取 - 增强梯度增强的BO(AEGEBO)方法来加速基于策略的增强型学习的收敛,通过将噪声观察结果结合到可以直接从闭环数据中估算的奖励函数及其梯度的噪声。将AEGBO的性能与传统的BO和基准LQR问题上众所周知的增强算法进行了比较,我们始终如一地观察到在有限的数据预算中显着提高了性能。
研究线性:根据CLSI EP06-A进行研究和评估,评估定量测量程序的线性。线性使用11个样品,并以增加浓度的利伐沙班(Rivaroxaban)峰值,覆盖0到506 ng/ml的范围。每个等离子体样品测量了每个浓度水平的四个重复。使用一种试剂,标准和系统的组合对样品进行了测量。结果(均值)与分配的值相比,并拟合多项式。 确定分析的偏差是由理论理想线性导致的,计算了每种稀释样品浓度的一阶回归模型与最合适的多项式回归模型之间的差异,并检查了预定义的标准。结果(均值)与分配的值相比,并拟合多项式。确定分析的偏差是由理论理想线性导致的,计算了每种稀释样品浓度的一阶回归模型与最合适的多项式回归模型之间的差异,并检查了预定义的标准。
摘要:在凝结物质系统中拓扑非平凡状态的探索以及它们的新运输特性,具有显着的研究兴趣。本评论旨在从量子厅绝缘子的初步提案开始,对代表性拓扑阶段进行全面概述。我们从简洁的介绍开始,然后对第一阶拓扑量子阶段进行详细检查,包括间隙和无间隙系统,涵盖了相关材料和实验中相关现象。随后,我们深入研究了异国高阶拓扑量子相的领域,研究了理论命题和实验发现。此外,我们讨论了高阶拓扑结构出现的基础机制,以及在实验验证表现出此类特性的材料中所涉及的挑战。最后,我们概述了未来的研究方向。本综述不仅系统地调查了各种拓扑量子状态,从一阶到高阶,而且还提出了实现高阶拓扑阶段的潜在方法,从而为检测实验中相关量子现象的检测提供了指导。
4我们使用Mendoza和Villalvazo(2020)开发的FIPIT算法。该算法修改了欧拉元素方程式的标准迭代方法,以避免求解同时求解非线性方程(如标准时间迭代方法)和不规则的插值(如内源性网格方法)。进行比较,附录B.1.2使用值函数迭代解决了模型。5在De Groot等人的附录B.3.7中。(2019年),我们提出了三阶应用程序(3OA)结果,并发现除非引入随机波动率,否则3OA是不必要的(请参阅De Groot,2016年)。对于QLOBC,我们使用DynareObc算法。div> dynareObc和oxcbin时,当均衡是唯一的时候,可以提供相同的解决方案。dynareObc的优点是它在有限的时间内收敛,并且可以测试平衡多重性。6在De Groot等人中。 (2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。 我们发现的定性特征没有变化。6在De Groot等人中。(2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。我们发现的定性特征没有变化。
2.重力测量网络建设和重力测量,包括地拉那-都拉斯地区所有一阶点、二阶和三阶重力测量。在地拉那-都拉斯地区创建大地水准面。在阿尔巴尼亚建设二阶国家 GNSS 网络和国家重力测量网络(300 点)。在阿尔巴尼亚建立第一个大地水准面模型
近年来,基于热激活延迟荧光 (TADF) 发射器的高效有机发光二极管 (OLED) 已经实现,但器件寿命需要进一步提高才能用于实际显示或照明应用。在这项工作中,通过调节单层未掺杂器件的光学腔,提出了一种器件设计原理,以实现高效、长寿命的 TADF OLED。通过增加发射层厚度将腔长延长至二阶干涉最大值可拓宽复合区,同时光学输出耦合效率仍然接近较薄的一阶器件。此类器件设计可得到高效稳定的单层非掺杂 OLED,其最大外量子效率为 16%,LT 90 为 452 小时,初始亮度为 1000 cd m − 2 时 LT 50 为 3693 小时,是一阶 OLED 的两倍。进一步证明,OLED 寿命和光强度之间广泛使用的经验关系源自三线态极化子湮没,从而推算出 100 cd m − 2 时的 LT 50 接近 90 000 小时,接近实际背光应用的需求。