课程描述MAP2302 |简介微分方程| 3.00学分本课程强调了普通的微分方程,一阶线性和非线性方程和应用的解决方案方法;具有恒定系数,差分操作员方法,高阶线性方程的均匀和非均匀线性方程;拉普拉斯变换及其属性,基本存在定理,串联解决方案,一阶方程的数值解决方案,初始和边界价值问题,振动和波浪以及自主系统的介绍。计算课程。
1简介1 1。1对第一门课程的评论。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 1。 1。 1一阶微分方程。 。 。 。 。 。 。 。 。 。 。 。 2 1。 1。 2秒阶线性微分方程。 。 。 。 。 。 6 1。 1。 3恒定系数方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 7 1。 1。 4未确定系数的方法。 。 。 。 。 。 。 。 。 。 9 1。 1。 5 Cauchy-Euler方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 1。 2课程概述。 。 。 。 。 。 。 。1对第一门课程的评论。。。。。。。。。。。。。。。。。。。。。2 1。1。1一阶微分方程。。。。。。。。。。。。2 1。1。2秒阶线性微分方程。。。。。。6 1。1。3恒定系数方程。。。。。。。。。。。。。。7 1。1。4未确定系数的方法。。。。。。。。。。9 1。1。5 Cauchy-Euler方程。。。。。。。。。。。。。。。。。。13 1。2课程概述。。。。。。。。。。。。。。。。。。。。。。15 1。3附录:减少顺序和复杂根。。。。。。16 1。4个应用程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1。4。1个质量弹簧系统。。。。。。。。。。。。。。。。。。。。19 1。4。2简单的摆。。。。。。。。。。。。。。。。。。。20 1。4。3 LRC电路。。。。。。。。。。。。。。。。。。。。。。。。20 1。4。4曲线的正交轨迹*。。。。。。。。。。。。21 1。4。5追踪曲线*。。。。。。。。。。。。。。。。。。。。。。。22 1。5其他一阶方程*。。。。。。。。。。。。。。。。。。。27 1。5。1 Bernoulli方程*。。。。。。。。。。。。。。。。。。。。27 1。5。2 Lagrange和Clairaut方程*。。。。。。。。。。。。28 1。5。。3 riccati方程*。。。。。。。。。。。。。。。。。。。。。31个问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
脑状态的定义仍然难以捉摸,从麻醉中的觉醒水平到本性神经元的活性,脑电图中的电压和fmri的血流,都在不同的子场上进行了不同的解释。这种缺乏共识给精确的神经动力学模型的发展带来了重大挑战。然而,在动态系统理论的基础上,定义了系统的“状态”,即对系统未来的规范。在这里,我们建议通过将动态因果建模(DCM)应用于静止和任务状况fMRI数据的低维嵌入,以在神经影像学的时间表中建立大脑状态。我们发现,在休息条件下约90%的受试者是通过一阶模型更好地描述的,而在任务条件下约55%的受试者可以通过二阶模型更好地描述。我们的工作质疑几乎完全在计算神经科学中使用一阶方程的现状,并在神经成像数据集中提供了一种建立大脑状态及其相关相位空间表示的新方法。
CM-301 Calculus ( 3 + 0 ) Limits & Continuity: Limits, Continuity, Tangent lines & Rate of Change, Sequence and Series: Sequence and Their Divergence and Convergence Test, Introduction to Infinite Series, Taylor and Maclaurin Series, Convergence and Divergence Test for Series: Limit comparison test, Ratio test, Root test, Derivatives: Techniques of differentiation, Chain rule and implicit differentiation, derivatives逆函数,双曲线函数,逆三角和双曲线函数,分化的应用,最大值和最小值单个可变功能的功能,边际分析,边际分析以及使用不确定的形式和l'医院规则,整体构成:riemann积分,整合和整合的序列,差异和整合的序列,依次和整合三角学和双曲线功能,正弦,余弦,割线和切线的功能的整合,部分,三角替代,不当积分,beta和伽玛积分,差异方程,差分方程:微分方程,形成和解决方程,方程,方程,一阶,初始和边界价值,求解一级方程式或求解的各种方程式,确切的既方程式,既有方程式,又有等方程,并依次分离,既有等方程,又有等方程,并依次分离,且既有等方程,又依次,既有等方程式,又依次分离,及以上等方程式,且共同依次,既有方程性,又有方程性的范围。轨迹。非线性一阶方程,信封和单数解决方案
傅里叶积分定理 – 傅里叶变换对-正弦和余弦变换 – 性质 – 基本函数变换 – 卷积定理 – 帕塞瓦尔恒等式。第三单元偏微分方程 9+3 形成 – 一阶方程的解 – 标准类型和可简化为标准类型的方程 – 奇异解 – 拉格朗日线性方程 – 通过给定曲线的积分曲面 – 具有常数系数的高阶线性方程的解。第四单元偏微分方程的应用 9+3 变量分离法 – 一维波动方程和一维热方程的解 – 二维热方程的稳态解 – 笛卡尔坐标中的傅里叶级数解。第六单元 Z – 变换和差分方程 9+3 Z 变换 – 基本性质 – 逆 Z 变换 – 卷积定理 – 初值和终值定理 – 差分方程的形成 – 使用 Z 变换求解差分方程。L:45,T:15,总计:60 节课 教科书 1.Grewal,B.S.“高等工程数学”,Khanna Publications(2007) 参考文献 1.Glyn James,“高级现代工程数学”,Pearson Education(2007) 2.Ramana,B.V. “高等工程数学”Tata McGraw Hill(2007)。3.Bali, N.P.和 Manish Goyal,“工程教科书第 7 版 (2007) Lakshmi Publications (P) Limited,新德里。
摘要在普通微分方程中的定性和定量方法在其理论和应用部分中都需要使用数学软件来实现在几何和数值分析中具有有效性的现代方法。目前的工作是为了分析与一阶普通微分方程相关的数学问题的解决方案。为此,由于其功能强大的数学机器和出色的象征能力,使用了枫软件,其界面使得易于分析,探索,可视化和解决与常规和定量理论有关的数学问题。首先,识别用于分析普通微分方程的枫木数学软件的特定特征。然后,考虑到普通微分方程的存在,独特性和稳定性,对一阶普通微分方程进行了分析和解决。讨论了一种定性研究一阶普通微分方程的研究,直接从方程中获取有关解决方案的定性信息,而无需将公式用于溶液。在这项工作中,在枫树中建立了工作表和开发工作表,其中包含解决附件数据记录表中问题的解决方案,与文献中出现的同一名称相同,名称问题问题设置为a:使用枫木和问题集b:一阶方程。获得了图形和数值表示,这些表示有助于对所提出的问题进行方便的分析和解释。
单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。单元2:应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸; shear force and bending moment diagrams;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的
电气,功率和能源工程(MTQP10)单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。桥梁:惠特斯通,开尔文,梅戈赫姆,麦克斯韦,安德森,Schering和Wien,用于测量R,L,C和频率,Q-meter。4-20 MA两线发射器。单元2:仪器,控制和自动化测量和仪器:SI单元,标准(R,L,C,电压,电流和频率),测量表达的系统和随机误差,不确定性的表达 - 准确性和精度,误差,线性和加权回归的传播。单相电路中电压,电流和功率的测量; AC和DC电流探针;真正的RMS仪表,电压和电流尺度,仪器变压器,计时器/计数器,时间,相位和频率测量,数字电压计,数字万用表;示波器,屏蔽和接地。电阻,电容,电感,压电,霍尔效应传感器和相关的信号调节电路; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor);液位,pH,电导率和粘度测量。
机械工程工程数学线性代数:矩阵代数,线性方程系统,特征值和特征向量。微积分:单个变量,极限,连续性和不同性,平均值定理,不确定形式的功能;评估确定和不当积分;双重和三个积分;部分衍生物,总导数,泰勒序列(一个和两个变量),最大值和最小值,傅立叶序列;梯度,差异和卷曲,矢量身份,方向衍生物,线,表面和体积积分,高斯的应用,Stokes和Green定理。微分方程:一阶方程(线性和非线性);具有恒定系数的高阶线性微分方程; Euler-Cauchy方程;初始和边界价值问题;拉普拉斯转变;热,波和拉普拉斯方程的解决方案。复杂变量:分析函数; Cauchy-Riemann方程;库奇的整体定理和整体公式;泰勒和洛朗系列。概率和统计:概率的定义,采样定理,条件概率;卑鄙,中位数,模式和标准偏差;随机变量,二项式,泊松和正常分布。数值方法:线性和非线性代数方程的数值解;通过梯形和辛普森的规则进行集成;微分方程的单步和多步法。应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸;剪切力和弯矩图;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的专栏理论;能量方法;热应力;应变仪和玫瑰花结;通过通用测试机对材料进行测试;测试硬度和影响力。机器理论:平面机制的位移,速度和加速度分析;链接的动态分析;凸轮;齿轮和齿轮火车;飞轮和州长;往复和旋转质量的平衡;陀螺仪。振动:单个自由系统的自由和强迫振动,阻尼的效果;振动隔离;谐振;轴的关键速度。机器设计:用于静态和动态加载的设计;失败理论;疲劳强度和S-N图;机器元素的设计原理,例如螺栓,铆接和焊接接头;轴,齿轮,滚动和滑动接触轴承,刹车和离合器,弹簧。流体力学和热科学流体力学:流体特性;流体静态,淹没物体的力,浮动物体的稳定性;质量,动量和能量的控制体积分析;流体加速度;连续性和动量的微分方程;伯努利方程;维度分析;不可压缩的流体,边界层,基本湍流,流过管道,管道损失,弯曲和配件的粘性流动;可压缩流体流量的基础。传热:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann定律,WIEN的位移定律,黑色和灰色表面,视图因素,辐射网络分析热力学:热力学系统和过程;纯物质的特性,理想和真实气体的行为;零和热力学的第一定律,在各种过程中的工作和热量计算;热力学的第二定律;热力学特性图表和表,可用性和不可逆性;热力学关系。