渔具通常由不可生物降解的材料制成,包括聚酰胺 (PA)。这些渔具一旦丢失在海洋中,将产生长期影响,包括海洋垃圾、微塑料的产生、化学物质的渗出,以及由于其耐用性而导致的长期幽灵捕捞。使用可生物降解的共聚酯材料,如聚丁二酸丁二醇酯-己二酸丁二醇酯-对苯二甲酸酯 (PBSAT) 和聚丁二酸丁二醇酯-己二酸丁二醇酯 (PBSA) 作为渔具材料,被认为是减少相关影响的潜在解决方案。海洋是一个复杂的环境,塑料材料可以发生多种降解路径,将各种因素分离可以帮助理解每个潜在因素的影响。本研究重点关注纯水水解现象对可生物降解共聚酯 PBSAT 和 PBSA 的影响,并与 PA 单丝在 40 ◦ C、60 ◦ C、70 ◦ C 和 80 ◦ C 下的加速老化进行比较。作为单一因素加速老化过程,可以预测在其他温度下机械强度随时间的损失,即 2 ◦ C、10 ◦ C、15 ◦ C、20 ◦ C 和 30 ◦ C。使用了不同的寿命终止标准。本研究得出结论,仅通过纯水解,使用可生物降解单丝代替 PA 可以大大缩短达到寿命终止标准的时间,但仍比预期的使用时间长。例如,在 2 ◦ C 时,PBSAT、PBSA 和 PA 分别需要大约 10 年、20 年和 1000 年才能失去其初始断裂应力的 50%。
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
3DP – 三维打印 AM – 增材制造 MFMS – 多功能材料系统 VP – 气相沉积 DED – 直接能量沉积 SL – 立体光刻 BJ – 粘合剂喷射 MJ – 材料喷射 ME – 材料挤出 ME3DP - 材料挤出 三维打印 ISO – 国际标准组织 ASTM – 美国材料与试验协会 FFF – 熔融长丝制造 FDM – 熔融沉积成型 CAM – 计算机辅助制造 CAD – 计算机辅助设计 VFR – 体积流动速率 PLA – 聚乳酸 PBS – 聚丁二酸丁二醇酯 PHA – 聚羟基烷酸酯 SMP – 形状记忆聚合物 CNT – 碳纳米管 4DP – 四维打印
从2023年生产的440万吨基于生物的聚合物(CA)生产的基于生物纤维素的聚合物,基于生物的含量为50%和环氧树脂含量,基于生物的含量为45%,在基于生物的生产的一半中,为24%和30%。,其次是100%基于生物的聚乳酸(PLA),其中11%,聚酰胺(PA)(基于Breio)的含量为8%和30%的基于生物的聚氨酯(PUR)为7%。聚乙烯(PE)(可提供100%和30%的基于生物的含量)和聚三甲基三苯二甲酸酯(PTT)(基于生物生物的31%)的份额为6和5%(图2)。聚(丁二醇 - 二苯二甲酸丁二酸)(PBAT),聚对苯二甲酸酯(PET),聚羟基烷酸(PHA)和含淀粉的聚合物化合物(SCPC)的份额均低于5%。Aliphatic polycarbonates (APC; linear and circular), casein polymers (CP), ethylene propylene diene monomer rubber (EPDM), polybutylene succinate (PBS), polyethylene furanoate (PEF) and polypropylene (PP) had a share below 1 % of the total bio-based polymer production volume and are not depicted (see Overview of bio-based基于生物的内容的聚合物特性)。
目的:通过观察其对肠道菌群组成的作用,肠道菌群的代谢功能,粪便短链脂肪酸(SCFA)水平和血清浓度TLR4,NF- - ,TLR4,TNF-κB,目的:探索朱正·汤比汤(ZTD)在治疗功能便秘(FC)中的机制。 FC。 患者和方法:40例FC患者被随机分为对照组和治疗组,每组20例。 在同一时期招募了和20名健康志愿者。 对照组给予乳乳糖,而治疗组则用ZTD处理。 16S RNA测序技术用于比较治疗前后患者肠道菌群的结构和多样性的变化。 分析了血清中粪便中SCFA水平的变化以及TLR4,NF-κB,TNF-α和IL-6的水平。 宏基因组学测序评估的微生物群代谢功能。 结果:治疗组显示有益细菌的相对丰度显着增加,包括双歧杆菌,乳酸杆菌和粪便核酸杆菌_prausnitzii(p <0.05),而desulfobacterota和desulfobacterota和ruminococcus显着降低(p <0.05)。 值得注意的是,治疗组的粪便和丙酸水平明显更高(p <0.05)。 血清生物标志物TLR4,NF-κB,TNF-α和IL-6显着降低(P <0.05)。 宏基因组测序表明,碳水化合物的代谢,辅因子和维生素的代谢以及C5分支的二丁二酸代谢代谢的功能丰度显着增加(p <0.05)。目的:探索朱正·汤比汤(ZTD)在治疗功能便秘(FC)中的机制。 FC。患者和方法:40例FC患者被随机分为对照组和治疗组,每组20例。和20名健康志愿者。对照组给予乳乳糖,而治疗组则用ZTD处理。16S RNA测序技术用于比较治疗前后患者肠道菌群的结构和多样性的变化。分析了血清中粪便中SCFA水平的变化以及TLR4,NF-κB,TNF-α和IL-6的水平。宏基因组学测序评估的微生物群代谢功能。结果:治疗组显示有益细菌的相对丰度显着增加,包括双歧杆菌,乳酸杆菌和粪便核酸杆菌_prausnitzii(p <0.05),而desulfobacterota和desulfobacterota和ruminococcus显着降低(p <0.05)。值得注意的是,治疗组的粪便和丙酸水平明显更高(p <0.05)。血清生物标志物TLR4,NF-κB,TNF-α和IL-6显着降低(P <0.05)。宏基因组测序表明,碳水化合物的代谢,辅因子和维生素的代谢以及C5分支的二丁二酸代谢代谢的功能丰度显着增加(p <0.05)。结论:ZTD明显改善了肠道菌群组成和肠道菌群代谢功能,调节SCFA水平,并减少FC患者的炎症标记。菌株Faecalibacterium_prausnitzii在调节肠道炎症方面显示出显着的潜力,并且可能在ZTD对FC的治疗功效中起关键作用。关键字:朱阳汤比汤,功能便秘,肠道菌群,代谢物,肠炎
c-0038基于人IPSC Pedro GarridoRodríguez的肝脏发育的纳米转录瘤和表观症状瘤;玛丽亚·拉马斯·洛佩斯(MaríaLlamasLópez);玛丽亚·尤金尼亚·杜加特(MaríaEugeniaChollet Dugarte);何塞·帕迪拉·鲁伊斯(JoséPadillaRuiz); Esther Navarro Manzano; Rosa Cifuentes Riquelme; JuanJoséRojoCarrillo; Vicente Vicente;玛丽亚·路易莎·洛扎诺(MaríaLuisaLozano);肖恩·哈里森(Sean Harrison);加雷斯·塞维尔哈维尔·科拉尔(Javier Corral); Gerben Menschaert;伯利恒莫雷娜·巴里奥(Morena Barrio); C-0039在大量儿科种群HelenaRodríguezGonzález中建立了Brabpostinal Homovanillic和5-羟基内丁二酸的连续参考间隔; Aida Ormazabal;梅赛德斯·卡萨多(Mercedes Casado); Angela Y. Arias;克拉拉·奥利瓦(Clara Oliva);玛丽亚·巴兰科·阿尔特里巴(Maria Barranco-Altirriba);里卡德·卡萨德瓦尔(Ricard Casadevall); francescgarcía-cuyas; AndrésNascimento;卡洛斯·奥尔特斯(Carlos Ortez); Daniel Natera-De-Benito; ThaisArmangé;玛丽亚·奥卡拉汉(Maria M. O'Callaghan); NataliaJuliá-Palacios;亚历杭德拉达令; JuanDaríoOrtigoza-escobar;卡姆·福斯(Carme Fons);天使加西亚 - 佐拉拉; Alexandre Perera-llluna;拉斐尔·阿尔图奇(Rafael Artuch); C-0040通过系统生物学的生物技术和生态兴趣的宏基因组功能酶变体的检测JacobGonzálezIsaGonzálezIsa;卡洛斯·佩雷斯(CarlosPérez)Cantalapiedra; Jordi Burguet Castell; Jaime Huerta菌株; div>
分析物1-甲基组织2-氨基二酰二酸2-羟基丁酸3-羟基苯乙酸3-羟基丁酸3-羟基丁酸3-羟基异丁酸3-羟基二丁二酸3-羟基丁酸盐含量3-羟基硝酸盐含量4-吡啶毒酸5-甲基四氢叶酸5-甲基四氢叶酸25-羟基维生素D2 25-羟基维生素D3乙酰氨基苯甲酰氯丁胺乙酸乙酸乙酯 Aspartic acid Asymmetric dimethylarginine Betaine Butyrate Butyrobetaine Butyrylcarnitine C-reactive protein Calprotectin and variants Carboxyethyllysine Carboxymethyllysine Carnitine, total Carnitine Choline Citrate Citrulline Cotinine Creatine Creatinine Cystathionine Cystatin C and variants Decanoylcarnitine Dimethylglycine Dodecanoylcarnitine Erythrocyte folate Flavin mononucleotide Folic acid Formate Fumarate Gamma-tocopherol Glutamic acid Glutamine Glutarylcarnitine Glycine HbA1c Hexadecanoylcarnitine Hexanoylcarnitine Histidine羟基丙二酰苯胺羟基氯苯乙烯氨基苯胺羟基羟基甲基烷烯丙基烯丙基硝基苯胺咪唑丙唑丙酸丙酸咪唑丙酸丙酸3-乙酰胺-3-乙酰醛3-乙酰胺-3-乙酰氨基二氨基氨基二氨酰胺-3-乙酰氨基氨基氨基氨基氨基酸吲哚 - 3-3-3-乙酸酯盐酸盐 - 乙酸硫酸盐 - 乙酸硫酸盐 - 3-3-3-3-3-3-依赖于3-3-抑制剂 - 依赖于3-抑制剂异亮氨酸