塑料培养通过聚合膜提高了作物质量和产量,但由于湿度和污染,它们的处置不当会损害环境。这项研究旨在使用大豆和花生壳以及聚(丁基 - 磷酸二甲甲酸酯)(PBAT)开发可生物降解的覆盖膜(PBAT)。残基的特征是通过热重分析的特征,并通过吸水,接触角和机械性能评估覆盖膜。残基的热行为表明稳定性低于200ºC。农业浪费改善了疏水性,但将膜的吸水值提高了18.5倍(14天后PBAT/SH5)。通过扫描电子显微镜获得的显微照片表明残基颗粒的重要分布和团聚酸盐的形成,导致机械性能降低。研究发现,可以将以粉末形式的农业工业残基添加到聚合物基质中,以通过传统的加工技术产生可生物降解的覆盖膜。这种方法有可能为更可持续的生产系统做出贡献。
3萨奇大学教授,印第安纳州452020,印度,由于人类的日常施用中的常规塑料产品过度使用,并且根据可获得的数据,只有9-10%的数据是从生产的日期中回收的,堆肥塑料,可堆肥的塑料,例如多乳酸(pla)和多种脂肪(butylene adipate-co-co-co-co-co-co-sereprate)(pbat)(PBAT)由于其生物学上可降解的特性,它是常规塑料的替代方法。这些塑料提供碳循环的圆形性。但是,每个人都有优势和缺点。PLA和PBAT是进行了几项研究的聚合物。这两种聚合物的化合物已经进行了有或没有链扩展器的准备,并且特性是研究。现在已经合成了许多可堆肥和可生物降解的聚合物,无论其单体根,无论是自然的还是化石碱。新开发的聚合物聚丁烯琥珀酸酯(PBS)也因其独特的特性而引起了制造商的注意。因此,PLA/PBAT/PBS的三元混合物在相位形态及其物理特性方面非常有趣,同时提供堆肥实践。在这项工作中,我们准备了不同的PLA/PBAT/PBS的混合物,或者不使用链条扩展器和碳酸钙作为填充剂。研究已在吹制薄膜挤出机上进行评估,以评估加工性。关键字:PLA-聚乳酸,PBAT-聚(丁基脂肪 - 蛋白甲酸酯),PBS -PBS-聚丁烯琥珀酸酯,CE - 链扩展器1。简介聚(丁基琥珀酸酯)(PBS)还报道了新开发的可生物降解聚合物之一,以增加基于PLA/PBAT的混合物的延展性。有趣的是,发现PLA/PBS与PLA矩阵的混合物被发现使它们对于制作二次包装的膜有趣。此外,研究由PLA,PBAT和PBS组成的三连续混合物/化合物的研究表明,具有与聚(乙烯)类似的特性的生物基相混合的有希望的有望[1-2S]。由于相分布,很难控制制造。更有希望。如今,已经开发了从生物质生产琥珀酸的植物,很快将完全由可再生能源生产[2]。此外,PBAT可能是可续签的,因为它的单体之一,现在可以从自然资源中获得1,4丁烷二醇[3]。使用可堆肥塑料生产柔性膜可能尤其重要,因为它们
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
COMIRNATY(二价)(适用于 12 岁及以上人群)(带灰色盖子的小瓶)包含什么 COVID-19 mRNA 疫苗的活性物质称为 tozinameran/famtozinameran。 单剂量小瓶含有 1 剂 0.3 毫升,每剂含 15 微克 tozinameran(原版)和 15 微克 famtozinameran(Omicron BA.4-5)。 多剂量小瓶含有 6 剂 0.3 毫升,每剂含 15 微克 tozinameran(原版)和 15 微克 famtozinameran(Omicron BA.4-5)。 其他成分包括: ((4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-己基癸酸酯) (ALC-0315) 2-[(聚乙二醇)-2000]-N,N-双十四烷基乙酰胺 (ALC-0159) 1,2-二硬脂酰-sn-甘油-3-磷酸胆碱 (DSPC) 胆固醇 氨丁三醇 (Tris 碱) 三(羟甲基)氨基乙烷盐酸盐 (Tris HCl) 蔗糖 注射用水
PBLG 360 PEG 8 20 – 36% 67 MA 180 – 323 PEG 1 – 42 88 – 97 % 39 PLL 150 – 2200 PEG 22 – 113 48% 68 PLLGA 9 PEG 11 – 114 96 – 99% 38 PCEVE 845 PS 60 77% 35 a abbreviations for polymer backbones and side-chains: MA (methacrylate); nb(诺本烯); ONBA(氧苯甲烯酸酐); NBA(Norbornene赤道); p n ba poly(n-丙烯酸丁酯); pdmaema(聚(2-(二甲基氨基)甲基丙烯酸乙酯); PMMA(聚(甲基丙烯酸甲基甲基甲基甲基))); PLA(聚(乳酸)); PS(聚苯乙烯); P T Ba(p t ba(p t ba(t丁基丙烯酸酯)异氰酸酯); PBLG(聚(聚γ-苯甲酰-L-谷氨酸)); PEG(聚乙二醇)); PLL(Poly(L-赖氨酸)); PLLGA(γ-Poly(-propargy-l-谷氨酸)); PCEVE(聚(氯乙基乙烯基醚))
缩写:ADPKD,常染色体显性多囊肾病;BB-FCF,亮蓝-FCF;CCD,皮质集合管;COX-2,环氧合酶-2;CX30,连接蛋白-30;CX30.3,连接蛋白-30.3;CX37,连接蛋白-37;DCPIB,4-(2-丁基-6,7-二氯-2-环戊基-茚满-1-酮-5-基)氧代丁酸;DCT,远曲小管;DTT,二硫苏糖醇;ENaC,上皮钠通道;GFR,肾小球滤过率;Gjb4 -/-,Gjb4 敲除;IMCD,内髓集合管;LRRC8,含 8 个富亮氨酸重复序列;Na +,钠;PBS,磷酸盐缓冲溶液; PC1,多囊蛋白-1;PC2,多囊蛋白-2;Pkd1 -/-,Pkd1 敲除;SDS,十二烷基硫酸钠;sgRNA,单向导 RNA;TBS,三羟甲基氨基甲烷缓冲溶液;TGF,管球反馈;UDP,尿苷二磷酸;VNUT,囊泡核苷酸转运蛋白;VRAC,容量调节阴离子通道;WT,野生型。
Crystic®解决方案TBC010 TBC010在苯乙烯溶液中TBC010介绍Crystic®解决方案TBC010是苯乙烯中T丁基儿茶酚抑制剂的溶液。添加Crystic®解决方案TBC010将减慢所有聚酯树脂系统的geltime。对于乙烯基酯,将发现丙酮更合适。加长的延长将取决于树脂类型,以及树脂中已经包含的加速器和其他抑制剂的水平。通常,0.05%足以使通用原则的直智聚酯树脂的盖尔特倍增。我们建议用户在给大量树脂给药之前,在小样本上进行自己的测试。应用Crystic®溶液TBC010可以添加到树脂,胶衣和其他聚酯树脂中,以减慢GELTIME。配方晶体®解决方案TBC010应在使用前达到车间温度(18ºC-30ºC)。以0.05%-0.2%的水平将Crystic®溶液TBC010添加到树脂中。使用机械搅拌器剧烈搅拌至少10分钟。建议将已通过Crystic®溶液TBC010处理的树脂在使用前至少一个小时站立,以确保抑制剂已彻底溶解。
摘要对于医疗传感设备,例如伤口愈合贴片,需要提供可穿戴和长期可用的电源。 这就需要经济高效、重量轻的电池。 我们在此提出一种由 Zn 阳极和聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)阴极组成的金属空气电池。 PEDOT:PSS 层通过薄膜沉积而成,由于其高粘附性而用作阴极,无需粘合剂。 分析了两种不同厚度的薄膜类型。 评估了 1-丁基-3-甲基咪唑辛基硫酸盐离子液体(据报道也充当稳定剂)对电性能的影响。 电极表现出低表面电阻率和相当大的放电容量。 结果表明,PEDOT:PSS 在空气电极中适当地充当了 O 2 氧化还原反应基质和导电粘合剂,这意味着 PEDOT:PSS 薄膜适合用于 Zn-空气电池的阴极。此外,我们展示了一种聚合物生物相容性锌空气电池装置,总厚度约为 2 毫米,易于组装、重量轻且经济高效。
可生物降解的塑料(BPS)已被广泛提倡作为石油衍生的聚合物的可持续替代品,旨在减轻微塑性污染的新兴危机。然而,BP的不完整生物降解剂可以生成更多和较小的颗粒,例如微塑料,可能会持续在环境中。在水生环境中,对BP的命运和影响,尤其是可生物降解的微塑料的知识仍然有限。我们研究了可生物降解的微塑料对各种水生环境中水生生物的浓度,检测方法和不利影响。可生物降解的微塑料,例如聚乙酸(乳酸),多羟基烷酸盐,聚丁二醇 - 脂肪酸 - 二甲酸酯)和聚(丁基琥珀酸酯),在废水,储层,储层和海洋环境中发现,浓度为0.054和180-180μg/l。他们的环境水平与水中的降解能力负相关。可生物降解的微塑料对水生微生物群落,植物的适应性和动物生理学的影响,其毒性随着降解而增加。本评论倡导对BPS周围的使用,处置和管理策略进行严格的重新评估。
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。