Michael Gallagher、Rosemary Bell、Anupam Choubey、Hua Dong、Joe Lachowski、Jong-Uk Kim、Masaki Kondo、Corey O'Connor、Greg Prokopowicz、Bob Barr、陶氏电子材料
Cyclotene™ 3000 系列先进电子树脂源自 B 阶段双苯并环丁烯 (BCB) 单体,是 Cyclotene™ 系列产品中的干法蚀刻级产品,专门用作微电子器件制造中的旋涂电介质材料。Cyclotene™ 树脂是低介电常数和低介电损耗材料,具有吸湿性低、不起气、低温固化和平面化性能优异等特点(图 1)。Cyclotene™ 产品的特性如表 1 所示。Cyclotene™ 树脂已广泛应用于各种电子应用,包括硅和复合半导体钝化、层间电介质、平板显示器、IC 封装、集成无源器件、MEMS、晶圆键合和 3D 集成以及光电元件。杜邦公司有四种 Cyclotene™ 3000 系列产品可供商业化供应,如表 2 所示。
摘要:在当前的数据时代,与光学应用有关的基础研究已迅速开发。无数配备有不同光学特性的新生材料已被广泛探索,在实际应用中表现出巨大的价值。光学数据存储技术是光学应用中最重要的主题之一,这被认为是征服质量增加质量数据的挑战的突出解决方案,以实现长寿,低能量和超级高能力数据存储。在此基础上,我们的审查概述了基于光学存储字段中应用的新建立的材料的代表性报告。根据材料类别,将代表性的功能系统分为稀土掺杂的纳米颗粒,石墨烯和日记丁烯。在三种材料之间的结构特征和微妙的特性方面,在综述中全面说明了光学存储中的应用。同时,还详细讨论了光学存储的潜在机会和关键挑战。
该路线图采用拓扑组装的前体(TAP)的技术,通过三个步骤可以阻止访问基态或其他异构体:(1)将所需结构的原子,结构和局部对称性的前体分子选择(2),然后将其选择为不同的拓扑组成。这是通过将前体单元限制在受约束的超晶格中并控制其整体取向以诱导相邻单元某些原子节点之间的连通性来实现的。(3)然后使用密度功能理论将这些拓扑组件放松到其最近的势能表面临界点。已提出了该路线图的使用,用于合成仅由五角大碳组成的五烯 - 五甲基 - 3,3-二甲基-1-丁烯(C 6 H 12)。理论计算表明,该碳多晶型物在动态和机械上是稳定的,耐温度高达1000 K,具有超高的理想强度,可以优于石墨烯,并且具有内在的准准级带隙,最大为3.25 eV。
NTU 团队开发的发电织物是一种能量收集装置,可将日常生活中最小的身体运动产生的振动转化为电能。原型织物以两种方式产生电能:当它被按压或挤压时(压电效应),以及当它与其他材料(如皮肤或橡胶手套)接触或摩擦时(摩擦电效应)。为了制造原型,科学家首先通过丝网印刷一种由银和苯乙烯-乙烯-丁烯-苯乙烯 (SEBS) 组成的“墨水”来制作可拉伸电极,SEBS 是一种橡胶状材料,常用于牙胶和车把握把,可使其更具弹性和防水。然后将这种可拉伸电极连接到一块纳米纤维织物上,该织物由两种主要成分组成:聚偏氟乙烯-六氟丙烯 (PVDFHPF),一种在压缩、弯曲或拉伸时产生电荷的聚合物;以及无铅钙钛矿,一种在太阳能电池和 LED 领域很有前途的材料。
为了提高全小分子 (ASM) 有机光伏 (OPV) 共混物的稳定性,一种名为苯乙烯-乙烯-丁烯-苯乙烯 (SEBS) 的绝缘聚合物作为形态稳定剂被应用于小分子 BM-ClEH:BO-4Cl 的主体系统。少量添加 SEBS(主体溶液中 1 mg/ml)可显著提高 T 80 值 15000 小时(外推),超过无掺杂(0 mg/ml)和重掺杂(10 mg/ml)对应物(900 小时、30 小时)。这种工业上可用的聚合物不会影响活性层的材料可重复性和成本效益,其中功率转换效率 (PCE) 可以很好地保持在 15.02%,对于非卤素溶剂处理的 ASM OPV 来说,这仍然是一个不错的值。形态学和光物理表征清楚地表明了 SEBS 在抑制供体分子降解和混合膜结晶/聚集重组方面的关键作用,从而有效地保护了激子动力学。这项工作对 ASM 系统稳定性给予了有意义的关注,采取了一种智能策略来抑制薄膜形态的退化,并全面了解了器件性能下降的机制。
Spondias Pinnata(L.F.)Kurz,通常称为野芒果或猪李子,是属于Anacardiaceae家族的药用树,在印度次大陆和东南亚的传统系统和编纂的药物系统中广泛使用。植物零件在内,包括根,树皮,叶子,水果和种子用于药物目的治疗各种疾病。植物化学分析表明,存在各种生物活性化合物,例如类黄酮,单宁,酚酸,皂苷和精油,这有助于其药理活性。精油富含单苯乙烯和倍半萜烯化合物,例如α-丁烯,牛角烯和geraniol。此外,还从植物的不同部位鉴定出了其他植物构成,包括β-甲酸,食道酸,咖啡酸和烷酸酯。最近的研究强调了其抗氧化剂,抗炎,抗菌和抗糖尿病特性,进一步验证了其传统用途,并暗示了开发新型治疗剂的潜力。本综述提供了S. pinnata的植物化学特性的全面概述,提供了可能对未来研究和建立有效天然药物的见解。
摘要:地中海饮食以植物性食物为基础,以其健康益处而闻名。本综述旨在概述一些代表性的地中海饮食植物中存在的生物活性分子,研究其人类的营养效应和健康益处,以及从其种植中获得的环境优势和可持续性。此外,它探讨了由土壤和植物菌群特性帮助的强化食品的便利。良好的例子,例如特级初榨橄榄油和柑橘类水果,表现出显着的健康优势,包括抗癌,抗炎和神经保护作用。在科学文献中提出了其他知名的植物,其对人类健康的有益特征强调了。刺梨的inishaxanthin具有抗氧化特性和潜在的抗癌特性,而刺山柑则具有Kaempferol和槲皮素支持心脏血管健康并预防癌症。牛至和百里香,含有甲状腺酸酚和γ-替丁烯,表现出抗菌作用。除了营养素的作用外,这些植物还在干旱的环境中壮成长,还提供了与其培养相关的益处。他们的微生物群,尤其是植物生长促进(PGP)微生物,增强了植物的生长和胁迫耐受性,为可持续农业提供了生物技术机会。总而言之,利用植物微生物群可以彻底改变农业实践,并随着气候变化威胁生物多样性而提高可持续性。这些可食用的植物物种可能具有至关重要的重要性,不仅是健康产品,而且对于提高农业系统的可持续性。
更广泛地应用可再生能源的瓶颈之一是开发高效的能源存储系统,以弥补可再生能源的间歇性。抽水蓄能 (PTES) 是一项非常新的技术,它可以成为抽水蓄能或压缩空气储能的一种有前途的独立于场地的替代方案,而不会受到相应的地质和环境限制。因此,本文对由高温热泵 (HTHP) 组成的 PTES 系统进行了完整的热力学分析,该系统通过中间高温热能存储系统 (HT-TES) 驱动有机朗肯循环 (ORC)。后者结合了潜热和显热热能存储子系统,以最大限度地发挥制冷剂过冷的优势。在验证了所提出的模型后,已经进行了几项参数研究,以评估在广泛的源和散热器温度下使用不同制冷剂和配置的系统性能。结果表明,对于在 HTHP 和 ORC 中采用相同制冷剂的系统,以及在 133 o C 下的潜热储热系统,R-1233zd(E) 和 R-1234ze(Z) 表现出最佳性能。在所有研究的 133 ◦ C 潜热储热系统的案例中,在 HTHP 中采用 R-1233zd(E) 并在 ORC 中采用丁烯时,系统性能最佳(同时考虑到对环境的影响)。理论上,在 HTHP 源温度和 ORC 接收器温度分别为 100 ◦ C 和 25 ◦ C 下,此类系统可达到 1.34 的功率比。© 2020 由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本文介绍了一种新型超大面积集成电路 (ELAIC) 解决方案(我们称之为“巨型芯片”),适用于将不同类型的多个芯片(例如,内存、专用集成电路 [ASIC]、中央处理器 [CPU]、图形处理单元 [GPU]、电源调节)组合到通用互连平台上的单个封装中。巨型芯片方法有助于重新构建异构芯片平铺,以开发具有所需电路密度和性能的高度复杂系统。本文重点介绍了最近关于大面积超导集成电路连接多个单独芯片的研究,特别关注了在单个芯片之间形成的高密度电互连的处理。我们重新制造了各种巨型芯片组件,并使用多种技术(例如扫描电子显微镜 (SEM)、光学显微镜、共聚焦显微镜、X 射线)对其进行了表征,以研究集成质量、最小特征尺寸、硅含量、芯片间间距和间隙填充。二氧化硅、苯并环丁烯 (BCB)、环氧树脂、聚酰亚胺和硅基电介质用于间隙填充、通孔形成和重分布层 (RDL)。对于巨型芯片方法,通过减少芯片间 (D2D) 间隙和增加硅含量来提高热稳定性,从而使组装人员能够缓解不同基板/模块集成方案的热膨胀系数 (CTE) 不匹配的问题,这对于实现从回流到室温甚至低温操作的宽温度范围稳定性非常重要。 Megachip 技术有助于实现更节省空间的设计,并可容纳大多数异构芯片,而不会影响稳定性或引入 CTE 不匹配或翘曲。各种异构芯片