摘要:从中央蒙古和俄罗斯(Southereasia)的低少量苏打水湖(Soda)(Siberia)中分离出革兰氏阴性,厌氧的光养分,动型,摩托车,棒状杆菌,被指定为B14B,A-7R和A-7Y。他们将层状堆栈作为光合结构,而细菌氯酚a作为主要的光合色素。发现菌株在25–35°C,pH 7.5–10.2(最佳,pH 9.0)和0–8%(w / v)NaCl(最佳,0%)下生长。在存在硫酸盐和碳酸氢盐,醋酸酯,丁酸酯,酵母提取物,乳酸,苹果酸,丙酮酸,琥珀酸和富马酸酯的情况下,促进了生长。DNA G + C含量为62.9–63.0 mol%。While the 16S rRNA gene sequences confirmed that the new strains belonged to the genus Ectothiorhodospira of the Ectothiorhodospiraceae, comparison of the genome nucleotide sequences of strains B14B, A-7R, and A-7Y revealed that the new isolates were remote from all described Ectothiorhodospira species both in dDDH (19.7–38.8%)和ANI(75.0–89.4%)。新菌株还通过缺乏所有其他外硫代刺皮缺乏的一氧化氮还原途径而在遗传上区分。我们建议将分离株分配给新物种,即牙孔lacustris sp。nov。,带有类型菌株B14b t(= DSM 116064 t = KCTC 25542 T = UQM 41491 T)。
抽象的简介和目标。短链脂肪酸(SCFA)是在人体中自然产生和代谢的物质。他们对系统产生许多有益的影响,并可以帮助治疗许多疾病。本文回顾了有关SCFA的当前知识状态,分析了他们的生产,行动机制和潜在用途。审查方法。审查是基于对PubMed数据库中可用的文献的分析,使用了关键词:×短链脂肪酸,€ut microbiome›,butyrate›对知识状态的简短描述。短链脂肪酸是驻留在大肠中的共生细菌产生的常见物质。三个主要的SCFA是:丁酸酯,丙酸和醋酸盐,饮食纤维的细菌代谢产物,自然发生在胃肠道中。SCFA具有抗炎特性,调节肠道菌群和免疫系统,有助于维持肠道的健康,包括肠上皮屏障的完整性。已尝试将SCFA纳入各种疾病的治疗中,几乎没有记录在各种疾病的治疗中。主要集中于饮食纤维,益生菌和含有SCFA的发酵食品的研究。关于肥胖症,糖尿病,炎症性肠病,脂质疾病和心血管疾病的治疗,已经观察到了有希望的结果。摘要。短链脂肪酸对于维持人类健康至关重要。它们独特的生物活性,自然发生和安全性可能会导致其在医学中的广泛应用。
电子邮件:paulo.eleuterio@ufrpe.br摘要高蛋白血症是生产母牛过渡时期最普遍的代谢疾病。它的特征是人体组织和液体中的酮体增加,以及代谢和细胞因子表达的变化,并且可能导致巨大的经济损失和动物健康损害。目的:通过解决与高蛋白血症相关的主要方面进行文献综述,突出了代谢谱的变化以及在过渡期内IL-1β和TNF-α细胞因子的表达。方法论:审查是基于1972年至2024年间发表的数据库中发现的文章,使用特定的术语,例如“高核血症”,“过渡期”和“代谢概况”。书目综述:当能量需求超过食物摄入量时,高核血症会响应负能量平衡,从而导致人体储量动员,并增加血液中的非固定脂肪酸(AGNES)。这些脂肪酸在肝脏中代谢,有利于酮症发生并导致代谢性疾病。代谢谱是评估牛群代谢健康的必要工具,可以鉴定生化参数的变化,例如葡萄糖,AGNES,蛋白质和激素。这种监测揭示了代谢与炎症反应之间的关系,这对于早期发现疾病至关重要。结论:通过β-羟基丁酸和Agnes等生物标志物的早期检测对于预防IL-1β和TNF-α细胞因子在奶牛的过渡期起着至关重要的作用,这有助于扩增与高腹血症相关的炎症反应。
技术 HPLC、IC、GCMS、ICPOES、分子克隆、蛋白质印迹、凝集素印迹、酶动力学、生物反应器培养(大肠杆菌、微藻、蓝藻)、共聚焦显微镜、流式细胞术、实时 qPCR、PCR、SDS PAGE、提取(蛋白质、氨基酸、脂肪酸、色素、碳水化合物、PHB) 出版物 Kriechbaum R.、Kronlachner L.、Limbeck A.、Kopp J.、Spadiut O.;迈向循环经济——利用小球藻重新利用马铃薯加工行业的副产品。环境管理杂志 (2024)。DOI:https://doi.org/10.1016/j.jenvman.2024.121796 Kriechbaum R.、Spadiut O.、Kopp J.;普通小球藻对呋喃化合物的生物转化——揭示生物技术潜力。微生物(2024)。 DOI:https://doi.org/10.3390/microorganisms12061222 Grivalský T、Lakatos GE、Štěrbová K、Manoel JAC、Beloša R、Divoká P、Kopp J、Kriechbaum R、Spadiut O、Zwirzitz A、Trenzinger K、Masojídek J (2024)集胞藻 MT_a24 在水道池中利用城市废水生产聚-β-羟基丁酸酯。应用微生物学与生物技术 108 (1):1- 12。doi:10.1007/s00253-023-12924-3 Kriechbaum R、Loaiza SS、Friedl A、Spadiut O、Kopp J (2023) 利用小球藻产生的稻草衍生的半纤维素水解物:为生物精炼方法做出贡献。应用藻类学杂志。doi:10.1007/s10811-023-03082-0 Doppler P、Kriechbaum R、Spadiut O (2022) 使用流式细胞术对丝状蓝藻 Anabaena sp. 进行高通量表征。微生物学方法杂志 199:106510。 doi:10.1016/j.mimet.2022.106510 Doppler P、Gasser C、Kriechbaum R、Ferizi A、Spadiut O (2021) 使用超声增强 ATR-FTIR 光谱探针对光生物反应器培养的集胞藻中的聚羟基丁酸酯进行原位定量分析。生物工程 8 (9):129 Doppler P、Kriechbaum R、Käfer M、Kopp J、Remias D、Spadiut O (2022) Coelastrella terrestris 用于生产 Adonixanthin:生理表征和次级类胡萝卜素生产力评估。 Marine Drugs 20 (3):175 Doppler P, Kriechbaum R , Singer B, Spadiut O (2021) 使微藻培养物再次无菌——利用荧光激活细胞分选的快速简便的工作流程。微生物方法杂志 186:106256。doi:https://doi.org/10.1016/j.mimet.2021.106256 Kriechbaum R , Ziaee E, Grünwald-Gruber C, Buscaill P, van der Hoorn RAL, Castilho A (2020) BGAL1 耗竭可提高 N. benthamiana 中 N- 和 O-聚糖的 β-半乳糖基化水平。植物生物技术杂志 18 (7):1537-1549。 doi:10.1111/pbi.13316 会议和研讨会 AlgaEurope – 希腊雅典 12/2024 海报展示:“循环水产养殖中的小球藻 – 鱼类废水中分析物的定量和预测”研讨会 Kreislauf Alge – Vom Abwasser zur Ressource 06/2024 口头报告和联合主持人
早期补充牛奶替代品(MR)中的牛至精油(EO)可能会改善生长,免疫反应,微生物群和乳制品犊牛的代谢组,并在奶牛场和成年期间。将16个女奶牛犊(3天)分为两组(n = 8/组):对照组(无EO)和EO组(在45天内,MR为0.23 mL的EO)。断奶后,小牛被放在饲养场中并随意喂食。称重动物,并在第3天(T0),45(T1)和370(T2)收集血液和粪便样品,以测量生化谱并表征外周血单核细胞(PBMCS;CD4Þ,CD8,CD8Þ,CD14Þ,CD14þ,CD21-,CD21-和WC1-和WC1 and),并及时。EO组在哺乳期(补充EO)期间仅具有更大的平均每日体重增加(P = 0.030)。EO组显示出较高的平均CD14Þ种群(单核细胞)值,浓度较低的Ruminococcaceae UCG-014,粪便核酸杆菌,Blautia和Alloprevotella以及Allistipes和Akkermansia的丰度增加。在血浆中的某些代谢产物的修饰,例如丁酸,3-吲哚丙酸和琥珀酸,尤其是在T1时,与肠道菌群的变化一致。数据表明,早期的EO补充剂仅在哺乳期间提高饲料效率,而微生物群和等离子体代谢组的显着变化。但是,从肠道健康的角度来看,并非所有这些变化都可以认为是可取的。需要进行其他研究以证明EOS是改善小腿生长性能和健康的抗生素的可行自然替代品。
肿瘤缺氧代表着一种严重的微环境应激,通常与酸中毒有关。癌细胞对这些应激的反应,基因表达的变化至少部分通过pH调节和代谢重编程促进生存。缺氧诱导的碳酸酐酶IX(CA IX)在催化水合细胞外CO 2对低氧和酸性环境中起着关键的适应性作用,以产生碳酸氢盐,以缓冲细胞内pH(PHI)。我们使用全蛋白质组的培养物来研究缺氧对短暂性CA IX敲低的细胞反应,发现关键的糖溶作酶和乳酸脱氢酶A(LDHA)的水平降低。有趣的是,LDH的活性也降低了,如天然凝胶活性测定法所示。这些变化导致体外癌细胞中糖酵解液和细胞外乳酸水平的显着降低,导致增殖降低。有趣的是,添加替代LDH底物α-酮丁酸酯恢复了LDHA活性,细胞外酸性,PHI和细胞增殖。这些结果表明,在没有CA IX的情况下,PHI的减少会破坏LDHA活性,并阻碍细胞的能力再生NAD +并将质子分泌到细胞外空间。缺氧诱导的Ca IX因此通过将细胞外CO 2转化为碳酸氢盐,并间接地通过维持糖酵解 - 渗透 - 渗透 - 渗透性的细胞内环向环境来直接介导对微环境缺氧和酸中毒的适应。
抽象贫血是体内低铁水平,也是全球女性最常见的残疾原因。失血,复发性感染,炎症性疾病和吸收问题是贫血引起的并发症之一。可以用益生元和铁补充剂治疗贫血。人体可以在特定食物中更有效使用的铁量称为铁生物利用度。两种形式的饮食铁是可吸收的:血红素和非血红素。血红素铁在肉,鱼类和家禽中发现,并从这些食物的血红蛋白和肌红蛋白成分中获得。血红素铁的生物利用度比非血红素铁的生物利用度高15-35%。益生元有助于改善肠道的健康并改善几种矿物质的吸收,最著名的是铁。不可消化的食物称为益生元滋养益生菌,以保持肠道健康。短链脂肪酸(SCFA),例如丙酸,丁酸酯和醋酸酯,是通过肠道微生物组的发酵在大肠中产生的。可以在包括牛奶,蜂蜜,大豆,竹芽,水果,蔬菜和小麦麸皮的食物中找到益生元。低维生素D水平可能引起恶性贫血,因为维生素D通过其对肝素的影响直接与铁吸收有关。乳制品是维生素D的主要来源,治疗贫血最流行的方法是服用铁补充剂。关键词铁缺乏症,肠道健康,微生物群,饮食纤维,营养吸收。
摘要肥胖是印度的全球公共卫生问题迅速增加,而印度的患病率为40.3%。本综述研究了Triphala在肥胖症治疗及其并发症中的潜在作用。方法:我们使用关键字Triphala,肥胖,DM,CVD和肠道微生物群选择了Scopus,PubMed和Google Scholar后选择相关文章。肥胖和相关并发症是通过人类肠道微生物组内的明确变化来考虑的。肥胖个体的肠道菌群含有较低比例的细菌群和大量的企业。肠道微生物群调制和振兴正在通过益生菌,益生元,合成生或粪便移植物作为预防肥胖和/或治疗策略而出现。的研究表明,丁酸酯产生细菌,如粪便核酸杆菌和akkermansia粘膜,在正常人中最大,但糖尿病患者中的菌属减半。宿主代谢综合征和心血管风险可能受到肠道微生物群的脂多糖(LPS)的影响。安慰剂对照试验得出的结论是,Triphala在减轻体重,圆周量度和体内脂肪中具有希望的作用。triphala的益生元效应,其中Triphala促进了良好的细菌的生长,同时抑制每个模型中的致病物质。临床研究在Triphala对凳子微生物组谱和炎症的影响方面仍在进行中。Triphala在改变肠道微生物群以有效治疗肥胖症及其并发症方面的作用尚待研究。在这里,我们建议Triphala通过靶向肠道微生物群来管理肥胖及其并发症的潜在作用。
for the following product(s): Models: S2-432 Type: Red - Far-red Sensors The object of the declaration described above is in conformity with the relevant Union harmonization legislation: 2014/30/EU Electromagnetic Compatibility (EMC) Directive 2011/65/EU Restriction of Hazardous Substances (RoHS 2) Directive 2015/863/EU Amending Annex II to Directive 2011/65/欧盟(ROHS 3)在合规评估期间参考的标准:EN 61326-1:2013,用于测量,控制和实验室使用的电气设备 - EMC需求EN 63000:2018用于评估电气和电子产品评估的技术文档,根据我们的危害限制,请根据我们的限制供应我们的原始产品,该产品可根据我们的限制,而我们的原始物质可以使用我们的原始物质,而我们的原始物质,我们的原始产品,我们的原始产品,我们的原始产品,我们的原始产品,我们的原始产品,我们的原始产品,我们的原始产品,我们的原始产品,我们的原料,该产品,我们的原始产品,我们的原始物质,该产品,我们的原始物质,该产品,我们的原始产品,我们的原始产品,该产品,我们的原始产品,我们的原料, additives, any of the restricted materials including lead (see note below), mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyls (PBDE), bis (2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP),和邻苯二甲酸二异丁酸(DIBP)。但是,请注意,使用豁免6C含有大于0.1%的铅浓度的文章符合ROHS 3。进一步指出,Apogee Instruments并未针对这些物质的原材料或最终产品进行任何分析,而是我们依靠材料供应商提供给我们的信息。签署并代表以下方式签名:Apogee Instruments,2023年10月
钠-葡萄糖协同转运蛋白 2 (SGLT2) 抑制剂目前是治疗心力衰竭的既定方法,与糖尿病状态无关 (1,2)。这一改变实践的发展已导致一系列专家和初级保健医生广泛采用该药物。已确定使用该药物治疗 2 型糖尿病会导致糖尿病酮症酸中毒,并已制定治疗方法 (3)。相比之下,心力衰竭临床试验中并未报告非糖尿病患者发生酮症酸中毒,从机制上讲,人们认为这种情况不太可能发生 (4)。我们报告了一例非糖尿病患者在最近开始使用 SGLT2 抑制剂治疗心力衰竭后发生酮症酸中毒的病例。一名 78 岁女性因 12 小时精神错乱和呕吐史入院。事件没有明显的诱因,并且在就诊当天她都很好。实验室检查结果显示代谢性酮症酸中毒,pH 值为 7.19,碳酸氢盐为 10 mmol/L,b -羟基丁酸为 4.0 mmol/L(表 1)。有趣的是,她入院时的静脉血糖水平为 2.3 mmol/L。她的病史包括心力衰竭,左心室射血分数为 20 – 30%,用比索洛尔和沙库巴曲/缬沙坦治疗。她 3 周前开始每天服用 10 毫克恩格列净。没有已知的糖尿病病史。HbA 1c 正常为 4.5% (26 mmol/mol)。她在重症监护室接受治疗,第一次静脉注射胰岛素总计 20 单位
