日期 事件摘要 1941 当 A. Philip Randolph 威胁要举行抗议游行时,罗斯福发布了第 8802 号行政命令,禁止战争工业中的种族歧视,并成立了公平就业实践委员会 (FEPC) 来执行该命令。 1942 种族平等大会 (CORE) 成立,并于 1943 年首次组织静坐抗议餐厅。 1944 第 761 坦克营 — — “黑豹党” — — 参加了突出部战役。 1944 在太平洋的佩莱利乌岛,第 17 SeeBee(建筑大队)连队在战火中救出受伤的士兵,并拿起步枪进行反击。 1944 将近 200 万黑人工人受雇于战争生产。 1944 最高法院裁定美国工会有义务“公平代表”黑人和白人工人。 1944 年,非裔美国妇女艾琳·摩根 (Irene Morgan) 因拒绝离开灰狗州际巴士的“白色”座位区而被捕。1945 年 2 月 - 3 月,美国女子陆军部队第 6888 营(主要由黑人组成)在 Charity Adams 少校的率领下前往英国伯明翰,清理了 400 万件未送达的积压邮件。
理由。在过去的几年里,神经网络已经学会了生成图像、创作音乐以及编写小说和科学文本。神经网络在不久的将来真的会取代艺术家吗?这种分析将有助于回答所提出的问题,并从定性上理解用机器计算取代创作过程的问题。目标是确定人工智能在当今艺术行业中的作用并分析其未来发展的可能性。方法。首先,值得分析一下神经网络的出现历史及其发展趋势。创建人工智能的科学设想最早出现于20世纪中期。早在1943年,沃尔特·皮茨(Walter Pitts)和沃伦·麦卡洛克(Warren McCulloch)就开发了神经元的数学模型。后来,在1960年,Frank Rosenblatt提出了感知器(Perceptron)的想法,这是一种基于对各种数据的分析而让计算机进行学习的模型。弗兰克·罗森布拉特 (Frank Rosenblatt) 发明了 Mark 1 电子机器,这是第一台神经计算机。后来,人们发明了更有效的“反向传播方法”,加速了神经网络的训练,并显著扩展了其能力。如今,神经网络不仅能够执行与特定动作序列相关的各种明确任务,而且还能够完全“模拟”创作过程,分析全球网络上数十万件艺术家的作品[1]。例如,2022 年《Cosmopolitan》杂志的封面完全由 DALL-E 2 神经网络创建(图 1)。现在与神经网络相关的重要问题之一是版权问题。在俄罗斯联邦,目前的立法还没有对此类问题进行规范,但俄罗斯的立法程序已经在考虑有关神经网络开发和使用问题的类似方面[3]。美国最近就神经网络作品的版权所有权展开了全面的法律诉讼。 Z.A. 写过这篇文章。 Dyatlov 在他的文章“作品版权,
自 1964 年以来,NSWC Corona 部门一直担任海军的独立评估机构。NSWC Corona 在评估海军作战能力方面拥有丰富的经验,是 NAVSEA 数据分析领域的领导者。Corona 利用联网数据环境、数据分析和可视化以及测量技术来连接海军的数据孤岛,帮助作战人员做出明智的决策。NSWC Corona 拥有 3,800 多名工程师、科学家和支持人员、水手和承包商,位于加利福尼亚州诺科,在福尔布鲁克和海豹滩设有分遣队,并在另外 14 个地点设有人员。战备评估 Corona 部门管理的项目旨在让舰队和海岸社区了解关键武器、战斗、C41 和 HM&E 系统的物资战备情况以及推动物资战备的因素。 Corona 为 600 多个系统和 2800 个变体(水面舰艇和潜艇上的 C5I 和 HM&E)提供可靠性、可维护性和可用性 (RM&A) 指标,提供自动化和预测分析。产品和服务广泛应用于海军项目办公室、在役工程代理、区域维护中心、OPNAV 和舰队。准备就绪评估能力和产品正在不断发展,以满足海军对提高准备就绪、成本和舰队维护/现代化过程透明度的日益增长的期望。性能评估 Corona 部门的技术根基在于对水面海军的进攻和防御系统进行分析数据驱动的性能评估,支持收购 T&E 和舰队演习反馈。能力涵盖数据、严谨性、系统和协作,以便及时进行全面评估。Corona 在数据需求文档中执行最佳实践,以确保可以使用正确的数据来回答关键问题。 Corona 维护着能够接收大量数据的协作空间,并能够在机密环境中存储、处理、分析和报告结果。Corona 已实施自动化并采用可视化软件,以简化在短时间内(例如,舰队作战训练演习只需几个小时)提供嵌入式通信、视频流和地面实况的稳健事件重建交付。靶场系统工程 Corona 部门为海军和联合训练和测试提供海军水面和空中靶场系统工程和技术解决方案,包括舰载系统和远程靶场区域,以及测试和训练靶场上的仪器的工程、集成和安装。Corona 运营和维护舰队战术训练靶场和网络环境,并且是舰队训练现场、虚拟和建设性 (LVC) 能力的技术工程代理。Corona 确保现有和未来的靶场系统满足舰队对战斗真实性、实时任务监控和重放以及用于分析和评估的信息和数据收集的需求。测量科学与工程 Corona 部门被指定为海军的测试和监控系统技术顾问,负责向整个海军企业的 2,750 多名人员传播校准指导,并确保测量准确且可追溯,符合国际标准,以降低错误测试决策的风险并提高舰队的杀伤力。Corona 编写了详细的校准程序,用于每年对海军超过 160 万件测试设备进行近 500,000 次校准;并使用这些校准的结果来建立和优化校准周期,以确保适当的风险与成本权衡。Corona 运营仪表和标准实验室,作为 NAVSEA 作战系统特殊接口仪表要求的技术权威。Corona 还对三叉戟再入系统 Mk4、Mk4A 和 Mk5 进行战略系统测试和分析以及监视评估。质量和任务保证评估 Corona 部门为战略和导弹防御系统提供质量和任务保证,这些系统对故障或问题系统的容忍度非常低,项目经理要求重点支持。Corona 制定和定制质量和任务保证 (Q&MA) 要求,概述项目办公室对管理层和客户参与采购和维护期间关键技术流程的期望,例如系统工程、测试、配置控制、可靠性、制造。此外,Corona 还为承包商和政府社区提供有关 Q&MA 要求的培训,进行评估,并提供现场技术专家来确定和提高 Q&MA 活动的有效性和严谨性。地面战斗武器和弹药测试、评估和评估 Corona 为美国海军陆战队和弹药社区提供地面弹药和武器工程专业知识。Corona 直接与采购社区和作战人员合作,通过提供以下支持来支持舰队后勤、作战行动和培训600 万件测试设备;并使用这些校准结果建立和优化校准周期,以确保适当的风险与成本权衡。Corona 运营量具和标准实验室,作为 NAVSEA 作战系统特殊接口量具要求的技术权威。Corona 还对三叉戟再入系统 Mk4、Mk4A 和 Mk5 进行战略系统测试和分析以及监视评估。质量和任务保证评估 Corona 部门为战略和导弹防御系统提供质量和任务保证,这些系统对故障或问题系统的容忍度非常低,项目经理要求重点支持。Corona 开发和定制质量和任务保证 (Q&MA) 要求,概述项目办公室对管理层和客户参与采购和维护期间关键技术流程的期望,例如系统工程、测试、配置控制、可靠性、制造。此外,Corona 还为承包商和政府社区提供有关 Q&MA 要求的培训,进行评估,并提供现场技术专家来确定和提高 Q&MA 活动的有效性和严谨性。地面作战武器和弹药测试、评估和评估 Corona 为美国海军陆战队和弹药界提供地面弹药和武器工程专业知识。Corona 直接与采购界和作战人员合作,通过提供以下服务来支持舰队后勤、作战行动和训练:600 万件测试设备;并使用这些校准结果建立和优化校准周期,以确保适当的风险与成本权衡。Corona 运营量具和标准实验室,作为 NAVSEA 作战系统特殊接口量具要求的技术权威。Corona 还对三叉戟再入系统 Mk4、Mk4A 和 Mk5 进行战略系统测试和分析以及监视评估。质量和任务保证评估 Corona 部门为战略和导弹防御系统提供质量和任务保证,这些系统对故障或问题系统的容忍度非常低,项目经理要求重点支持。Corona 开发和定制质量和任务保证 (Q&MA) 要求,概述项目办公室对管理层和客户参与采购和维护期间关键技术流程的期望,例如系统工程、测试、配置控制、可靠性、制造。此外,Corona 还为承包商和政府社区提供有关 Q&MA 要求的培训,进行评估,并提供现场技术专家来确定和提高 Q&MA 活动的有效性和严谨性。地面作战武器和弹药测试、评估和评估 Corona 为美国海军陆战队和弹药界提供地面弹药和武器工程专业知识。Corona 直接与采购界和作战人员合作,通过提供以下服务来支持舰队后勤、作战行动和训练:Corona 直接与采购社区和作战人员合作,通过提供以下服务来支持舰队后勤、作战行动和训练:Corona 直接与采购社区和作战人员合作,通过提供以下服务来支持舰队后勤、作战行动和训练:
特色与定位:注重人才培养与科研“教学+创新竞赛+科研+产学研+国际合作”一体化发展模式。 全系现有教师100余人,其中国家杰青、长江学者、国家万人计划等省部级以上人才7人,高级职称20人,博士学位占75%。 本系设有机械工程博士后流动站和一级学科博士点,机械制造及其自动化、机械设计及理论、机电工程二级学科博士点。 本系设有机械制造及其自动化、机械设计及理论、机电工程、车辆工程四个硕士学位授予点,设有全英语留学生专业——机械制造及其自动化。 系设有机械工程及其自动化(国家首批优秀本科专业)、智能制造工程(教育部首批专业)、工业工程、工业设计等本科专业。 系建设了近10门上海市精品、重点课程,获得省级教学成果一等奖2项,每年学生在国家级、省部级竞赛中获一等奖50余项。 形成了“智能基础部件”、“智能制造技术与应用”、“机器人与智能设计”、“光机电智能检测与装备”、“机电液一体化控制”等5个稳定的科研团队。近三年来,康复系获得科研经费1.3亿余元,获省部级科技奖一等奖2项,取得发明专利160余万件,与航空航天、汽车交通、海洋装备制造等领域近50家企业建立了产学研合作,建成了“智能康复机器人及可穿戴康复设备”上海市高水平地方高校重点创新团队。 康复系与美国普渡大学、德国亚琛工业大学、加拿大多伦多大学、英国南安普顿大学签订了3+1+1联合培养协议,与美国伍斯特理工大学、美国圣母大学合作开展联合毕业设计项目。 康复系每年为学生提供来自方舟/方耀、东洋电装、新松、耿奇、蔡司等最高32万元的奖学金。
影响 净利润将同比和环比双双下降,主要原因是外汇。我们预计 SUN 的 4Q67F 净利润将达到 8400 万泰铢(同比下降 29%,环比下降 40%)。导致净利润下降的主要因素是外汇收益大幅下降。预计利润为 200 万泰铢,而 66 年第四季度和 67 年第三季度的利润分别为 4000 万泰铢和 6200 万泰铢,尽管是淡季,但营业利润仍将保持强劲,达到 1.04 亿泰铢(同比增长 3%,但环比下降 8%)。销售收入将令人印象深刻,高于我们之前的预期,达到 10 亿泰铢(同比增长 19%,环比增长 10%),这是该公司第二好的季度销售额。为了应对供应限制,淡季甜玉米需求旺盛(部分原因是由于 3Q67 发生洪水)SUN 使用了存放在仓库中的半成品。同时产品组销售即食食品继续强劲增长,同比分别增长 10% 和 9%,日均销量为 13 万至 15 万件。然而,我们预计毛利率 (GPM) 将同比分别下降 1.5 个百分点和环比分别下降 2.1 个百分点至 20.3%,因为本季度产量下降导致单位生产成本上升。从费用占比来看由于销售收入增加,销售、一般及管理费用 (SG&A) 利润率预计将同比小幅提升。新生产能力将成为 2025 年增长的关键驱动力。SUN 的新即食工厂计划于 1Q68 末开始运营,生产能力将翻倍(100%),以支持国内和国际市场的新即食产品。对于出口市场,该产品的保质期将更长(一年),并将在日本和韩国的便利店出售,而与利乐公司合作生产纸质包装甜玉米将于 4Q68F 开始,两个项目都将开展。它应该会在 2025F-2026F 推动两位数的销售增长。尽管我们预计 1Q68F 利润将与上一季度基本持平,因为一年中的第一季度通常是淡季,但由于 1Q67 基数较低,客户去库存,以及 1Q67 来自中国的激烈竞争,SUN 的利润应该会同比大幅增长。最近,在几家主要客户之后,整体市场形势有所改善。回到订购产品,SUN 仍然比中国竞争对手具有竞争优势在产品质量和可靠性方面
MiranMozetič教授于1961年出生于斯洛文尼亚的卢布尔雅那,并在斯洛文尼亚马里波尔大学获得了电子真空技术博士学位。自2009年以来,他一直是薄膜结构和等离子体表面工程研究团队的负责人,自2010年以来,他一直是斯洛文尼亚卢布尔雅那国际研究生院的教授。MiranMozetič教授为各种材料的血浆处理完成了以下出色的发明。首先,他开发了一种对聚合物复合材料的血浆处理方法,该方法可以直接电化学金属化并构建了生产线。每年生产超过3000万件,已有十多年来。射频发生器的创新耦合可以在批处理模式下均匀地处理众多产品。Mozetič教授开发的第二种技术是一种在大气压下在水中维持低压等离子体的方法。该方法基于通过超级浪费建立稳定的气泡。电极浸入气泡饱和压力下的气泡中。在这种压力下(与经典的大气压等离子体相比,OH激进分子的相对较长的寿命)和经过超级浪费气泡的水的快速速度可以使水中的病毒快速失活。第三个等离子体技术是在连续模式下具有氢血浆的金属的脱氧化。Mozetič教授开发了一种方法并构建了生产线。第四,Mozetič教授开发了一种快速激活氟化聚合物的方法。均匀的等离子体使用辐射发电机的四极耦合在10 m以上的反应器中维持,因为由于经典耦合不合适,因此由于对长线圈的绝大阻抗不合适。用特氟龙或类似材料制成的产品用氢血浆处理或多或少。真空紫外线辐射和氢原子之间的协同作用会导致C-F键的分裂,并在氟化聚合物表面形成非常薄的聚烯烃层。在第二步中,用中性氧原子处理产物,以确保这些疏水材料的超亲养表面饰面。Mozetič教授开发的第五个等离子技术用于在连续模式下处理种子。他构建了一个8米长的拖车,该拖车在农场用于种子,消毒和表面激活的排毒,从而使种子的超亲水表面饰面使种子的超亲水表面饰面,因此在播种后迅速吸收了水。种子处理设备的容量超过1吨/小时,并且通过通过垂直等离子体反应器掉落种子来实现治疗均匀性。发明记录在欧盟和/或美国办事处授予的20份专利中。Mozetič教授在期刊的科学会议或讲习班上合着了400多种科学文章,并给予了大约100篇被邀请的,主题演讲或全体讲座。他的科学成就为应用和工业项目提供了坚实的背景,他的专业正在提高创新的解决方案和建造大型低压非平衡等离子体反应堆,这些血浆反应堆已用于批量生产。
欢迎阅读国防合同管理局的《INSIGHT》杂志。这些页面介绍了 DCMA 在我们的国防团队中的地位,以及该机构在 2023 年初的概况。最重要的是,它介绍了组成 DCMA 的一些团队成员——我们值得信赖的专业人士。去年,我们以新的愿景和更新的战略计划开始,以指导我们的使命和工作场所走向未来。在过去的财政年度中,我们为我们的服务部门交付了超过 4.4 亿件物品,价值超过 960 亿美元。每天,我们签署并交到我们的作战人员手中的物品有 120 万件。得益于 DCMA 敬业的专业人士,有史以来最先进的作战装备(从飞机到地面车辆和卫星系统)现在正在战场上。我们让国防部的采购项目继续推进,也帮助我们的国防工业基础和经济发展。我们每个工作日都会批准向国防工业基础支付超过 10 亿美元,DCMA 团队会确保我们的作战人员和国家纳税人得到他们所支付的。俄罗斯入侵其主权邻国一年后,美国和我们在世界各地的盟友和伙伴仍然步调一致地支持乌克兰,要求俄罗斯承担责任并阻止俄罗斯对北约的侵略。自入侵开始以来,美国已向乌克兰提供了超过 350 亿美元的安全援助。国防部对乌克兰的回应只是 DCMA 通过专业采购服务提供关键支持的一个例子。其中一些已经到位。虽然对乌克兰的初步反应主要是从现有的美国库存中提供物资和设备,但 DCMA 已经成为重建这些库存并迅速满足未来需求的重要组成部分。每天,我们的人员都会与各服务部门、采购司令部和项目办公室合作,帮助采购必要的设备和系统。我们的专业人员在工厂车间和网上确保我们的国防工业基地快速补充库存,并执行合同以维护旧设备并构建未来的系统。从陆军的新步枪到空军的下一代轰炸机,DCMA 都在团队中。即使我们在部门一些最关键的现代化优先事项上的工作量不断增加,但为该机构提供用于执行这些工作量的资源仍然持平甚至下降。我们必须继续改造该机构,以灵活和专业化的巧妙结合来满足这些需求。我们现在正在内部发展,并计划进行全面的结构性变革,以跟上客户的步伐和方向。我们已经在地理上整合了精选办公室,以提高效率并充分利用我们的职能专家,而且,重要的是,我们将在今年晚些时候将所有以太空为重点的服务重新调整到一个办公室。这些努力是其他计划中的地理、产品和系统一致变革的先行者,这些变革将使 DCMA 更有价值,并让整个部门的服务和项目办公室都能使用。国防合同管理已经发展了几代人。然而,我们的使命保持不变,而且和以往一样重要。威胁、能力、制造流程、技术和经济都推动和拉动着国防部的要求,推动着 DCMA 的工作。我们的作战人员在现实世界中作战,他们需要国防部专业人员的实时支持。DCMA 和我们的前辈一直是我们国防团队的一部分,我们期待在未来很长一段时间内为作战人员的成功做出贡献。
图 1-1:物联网示意图 ................................................ . ................................................. ...................7 图 1-2:不同类型的条形码;一维或线性、堆叠线性和二维 [3]。................................................ . ................................................. ................................................. .....7 图 1-3:安全元件(智能卡、护照、重要卡)市场的全球预测(2010 年至 2018 年售出数百万件) – Eurosmart [4] .... ... ……………………………… ................................8 图 1-4:2017 年非接触式市场:销量(单位:百万台)[4] ……………………………… ......9 图1-5:战争期间利用反向散射原理与雷达操作员进行通信 [7]。................................................ . ................................................... 31 图 1-26:带有外力传感器进行跟踪的 RFID 标签食品 [25] ................................... 33 图 1-27:a) 使用基于石墨烯的外部功能化区域的 RFID 传感器b) 电阻随相对湿度变化而变化的结果 [22] ................................................... 33 图 1-28:通信 RFID 传感器系列模拟................................................ ................. 35 图 1-29:具有阈值检测功能的生物 RFID 传感器:a) RFID 传感器剖面图,b) 俯视图,c) 不可逆石蜡基底的影响:芯片最小激活功率随温度变化的变化[61]。................................................ . ................................................. ...................................................... 39 图1 -30:示例取自带有敏感天线的 RFID 传感器文献,左侧:完全由石墨烯制成的天线 [47],右侧:由石墨烯精细部件组成的天线 [72]。...................................... 41 图 1-31:取自[76]的结果:a) 900 MHz 下蒸馏水的电特性 b ) RFID 传感器的最小激活功率,针对不同气温进行测量和平均。...................................... 43 图 1-32:结果取自[48]:a) 示意图由 Pt_rGO 实现功能化的射频识别 (RFID) 传感器标签。b) 柔性 RFID 传感器的照片。c) RFID 传感器的测量结果作为氢浓度的函数。................................................ . 43 图 2-1:无源 UHF RFID 传感器的天线功能化检测策略 ................................. ....... 56 图 2-2:无源 UHF RFID 标签的等效电路 [1] ........................................ ................................................ 57 图 2 -3: 辐射图偶极子与各向同性偶极子的比较 [5] ................................................ 59 图 2-4:极化电磁波的特征,a) 垂直极化,b) 水平极化和 c) 圆极化 [6] ........................................ . ................................................. ................................................. ....... 60 图 2-5:RFID 阅读器和标签之间的读取距离示意图 ................................ ................................................. 60 图 2-6:材料与电阻率的关系 [8] .... ................................................... ................................................... 62 图 2-7:法拉第实验:电枢电容器 [10] ................................ 62 图 2-8:电容器上电场感应的偶极矩原子 [10] ................................................ . .... 63 图 2-9:极化现象示意图 [10] ................................................ .. ................................... 64 图 2-10:复介电常数随频率的变化 [14] ................................................... 66 图2-11:实部和虚部复介电常数的计算....................................................... ................................. 66 图 2-12:介电常数和损耗对天线反射系数的影响....................... 67 图 2-13:小麦面筋的复介电常数与相对湿度 (RH) 的函数关系,频率为 868 MHz,温度为 25°C [13]。................................................ . ................................................. ................................................. ...................................... 68 图 2-14:拟议传感器天线的组成示意图。................................................ . ............ 69 图 2-15:用不同的方法对球体进行网格划分: (a) 球体的几何形状;使用 (b) 四面体 (FEM)、(c) 正交单元 (FDTD) 和 (d) 三角形 (MoM)[21]。...................................... 70