ZEUS 多拍瓦激光设施的首次实验。亚特兰大——希腊神宙斯以控制闪电的能力而闻名,闪电是一种等离子体现象,当带负电的电子与构成空气的原子中的带正电的离子分离时,就会在大气中发生。强激光可以在实验室中引起同样的电荷分离,将原子分离成电子和离子的混合物,称为等离子体,等离子体的速度如此之快,以至于等离子体以相对论速度移动。加州大学欧文分校的研究人员在密歇根大学安娜堡分校的新 ZEUS 多拍瓦激光设施上进行首次正式实验时,探索了如何控制这些“激光诱导闪电”。了解这种相互作用中的极端物理现象本身就很有趣;然而,控制激光焦点极端条件的能力将使微型粒子加速器成为现实。如果粒子加速器体积小且价格低廉,它们可以用于医学成像、放射性同位素生产、核废料清理、先进制造等应用。粒子加速器也是至关重要的,因为它是 X 射线的强光源。目前,我们建造的粒子加速器大小相当于足球场大小,用作 X 射线机,既耗时又昂贵。加州大学研究人员利用 ZEUS 激光器证明,从激光和拇指大小的气体中可以获得类似的 X 射线。ZEUS 由美国国家科学基金会资助,正在努力成为美国最强大的激光器。在满功率下,它将能够在一次激光爆发中提供高达 3 拍瓦的功率,即超过三百万亿瓦的功率。相比之下,整个美国电网提供的功率约为太瓦,比 ZEUS 少一千倍,而 LED 灯泡仅使用约 5 瓦的功率。ZEUS 成为现实的秘诀是啁啾脉冲放大技术,该技术获得了 2018 年诺贝尔物理学奖。虽然激光非常强大,但它只能持续很短的时间,因此爆发所需的能量相对较少。在加州大学欧文分校的这项实验中(图 1),激光功率有所增加,以帮助更好地理解电子加速的物理原理与发射的 X 射线之间的关系,产生的 X 射线比牙科 X 射线亮 1000 万倍以上。
背景:类脑计算将传统计算技术与受人脑启发的计算和认知思想、原理和模型相结合,以构建智能信息系统,用于我们的日常生活。图像和语音处理、盲信号分离、创造性规划和设计、决策、自适应控制、知识获取和数据库挖掘只是类脑计算应用的一些领域。我们对大脑功能了解得越多,信息系统就越智能。本书还介绍了心智和意识建模的一个主题,以及人工智能领域的其他新理论模型和应用。人脑是一种非常节能的装置。从计算角度来说,它仅需 20 瓦的功率就能每秒执行相当于十亿亿亿亿次浮点运算(1 后面跟着 18 个零)的数学运算。相比之下,世界上最强大的超级计算机之一“橡树岭前沿” (Oak Ridge Frontier) 最近演示了百亿亿次计算能力。然而,要实现这一壮举需要数百万倍的功率,即 20 兆瓦。我和我的同事希望通过大脑来指导开发强大而节能的计算机电路设计。你看,能源效率已经成为阻碍我们制造更强大的计算机芯片的一个主要因素。虽然更小的电子元件已成倍地提高了我们设备的计算能力,但进展却正在放缓。有趣的是,我们对大脑如何运作的看法一直是计算机世界的灵感源泉。为了理解我们是如何得出这种方法的,我们需要简单回顾一下计算的历史。人脑是宇宙中最复杂的物体之一。它能够在不断变化的环境中执行高级认知任务,例如抽象、概括、预测、决策、识别和导航。大脑这种较高的认知能力得益于它的功耗非常低,只有20W。大脑能效高的原因主要有两点:一是信息交换和处理是事件驱动的;因此,尖峰能量仅在需要的时间和地点被消耗。其次,神经元和突触位于同一个神经网络中,高度互联,每个神经元平均与104个其他神经元相连。神经元/突触共位意味着数据处理(由突触兴奋和神经元放电组成)和记忆(由突触权重和神经元阈值组成)在大脑内共享同一位置。许多研究工作旨在模仿人类大脑的计算类型,以实现非凡的能源效率。这是神经形态工程的目标,其中,脉冲神经网络(SNN)是利用人工神经元和突触开发出来的。 SNN 通常采用与 Rosenblatt 和 Minsky 开创的传统感知器网络相同的全连接 (FC) 架构。然而,在 SNN 中,神经元和突触通常表现出对施加的尖峰的时间依赖性响应,例如神经元内的整合和发射以及跨突触的兴奋性突触后电流 (EPSC)。这与用于计算机视觉和语音识别的人工智能 (AI) 加速器中的传统人工神经网络 (ANN) 形成对比,其中信息是同步的并且基于信号幅度而不是时间。大多数 SNN 通常依赖于互补金属氧化物半导体 (CMOS) 技术,具有两个显著的关键优势:首先,CMOS 技术在半导体行业生态系统中广泛可用,包括设计、制造和鉴定,为基于 CMOS 的神经形态工程成为成熟主题创造了条件。其次,CMOS晶体管可以按照摩尔定律小型化,其中减小
执行摘要 与基于数字位取值为 0 或 1 的传统计算截然不同,量子计算机的量子位 (qubits) 可以同时处理位值 0 和 1。利用此功能,多个相互作用的量子位可以表示大量信息;与传统计算机相比,量子处理器中可以同时共存的二进制数呈指数级增长。即使面对摩尔定律(传统计算机能力每隔一两年翻一番),仅几百个量子位的大规模纠缠量子态的复杂性也很容易超越传统信息处理的能力。大规模量子计算机的运行速度有可能比当今最先进的超级计算机快数百万倍 [1]。利用量子计算能力的国家将能够彻底改变广泛的行业,包括医疗保健、通信、金融服务和交通运输。了解量子计算对于维护国家安全以及商业和私人网络安全也至关重要,因为量子计算机可以破解基于大数分解的传统加密方法。这是全世界都认可的。“量子计算的全球领导地位带来了军事和情报优势,以及许多人预计未来几十年将成为一个庞大产业的竞争优势,”美国众议院科学、空间和技术委员会在 2018 年 9 月 13 日的一份声明中写道,当天众议院一致通过了《国家量子计划法案》,投资 12 亿美元用于一项计划,其中三分之一由美国国家标准与技术研究所 (NIST) 实施。目前,两种技术平台是实现大规模量子计算机的主要候选者:捕获离子和超导量子比特,每种技术都有其优点和缺点。虽然英国国家量子技术计划迄今为止优先考虑离子阱平台,但其他国家(美国、大多数欧洲国家、中国、俄罗斯、加拿大、日本)也分散了对两个平台的投资。大多数商业公司(例如IBM、Google、Intel、Rigetti、D-Wave、阿里巴巴)专门开发超导处理器。SQC 不再仅仅属于基础研究领域,而已成为一场工程竞赛。有些人将其比作过去的太空竞赛。多快?近年来,基于超导芯片的量子计算机日趋成熟,其速度甚至超过了最大胆的专家预测。如今,相对较小但不太实用的超导量子计算机已在网上向所有人开放。更大、性能呈指数级增强的超导处理器正在实验室中进行测试。由于量子计算的军事和安全影响,一旦这些大规模量子计算机在不久的将来面世,就不能指望获得不受限制的访问权限。量子霸权很可能在 2020 年之前实现,即超导量子计算机能够比最先进的传统超级计算机更快地解决特定问题,有些人甚至预测今年就能实现!英国科学家为超导领域做出了关键贡献。最近,我们还成功吸引了许多来自国外的 SQC 顶尖研究人员。多年来,我们的工程师已经创建了足以推动 SQC 发展的低温、纳米制造、软件和电子技术基础。NPL 的 SQC 测试和评估能力处于世界领先地位。本文的主要结论是,我们认为,在国际舞台上,超导技术已经成熟到英国将其国家专业知识和设施整合在一起进行协调活动的水平。如果决定资助一个基于生产工程系统的重点管理项目,我们相信这将能够以最高的期望水平为英国提供超导量子计算能力。
请等待您的请求得到验证...Shikha Pandey撰写的最后修改了25-01-2023的替代能源:无法创造或破坏能源;它只是从一种形式转变为另一种形式,例如细胞中变成光的化学能。我们使用诸如化石燃料之类的自然资源进行日常活动,但是这些易生燃料是不可更新的,并且会引起环境问题,例如全球变暖和污染。为了对抗这一点,我们正在转移到替代能源的替代能源,这些能源很快补充并且环保。让我们进一步探索这些选项。定义:替代能源(非常规):可以快速补充这些天然来源,并且不使用化石燃料。它们不会造成污染,并且可以随着时间的流逝而不会被耗尽。示例包括太阳能,风,波和地热能。替代能源的类型:风能利用高速风的动能使用风能发电机或风车发电。水电发电厂将储存的水的潜力转化为动能,从而驱动发电机发电。太阳能使用太阳的热量和光线通过太阳能炊具和电池发电。典型的太阳能电池可产生0.5-1V和0.7W的电能,而太阳能电池板由多个电池组成。让我们进一步了解这些替代能源的来源!太阳能电池板在偏远地区的许多家庭使用来满足其需求。路灯和交通信号灯也以太阳能运行。太阳能电池甚至在计算器中发现。太阳能炊具是一种用于烹饪食物的装置,该设备由盒子状结构制成,带有黑色外表面,可吸收热量,玻璃板覆盖食物以及镜子反射器。镜子将阳光反射到玻璃板上,将食物加热到其中。厚玻璃可防止炊具的热量损失。地热能来自地球的内部热量。它用于利用被困在表面下方的热水产生的蒸汽来发电。核能是可靠的权力来源,比燃烧的煤产生数百万倍的能量。它通过通过核裂变将重原子拆分成较轻的原子来起作用。海洋潮汐是另一个能源,是由太阳和月亮在地球上的引力引起的。可以通过跨三角洲的大坝建造大坝来利用潮汐能,随着水位的上升和下降,涡轮机发电。海浪还具有可以将波动站转换为电力的动能。这些站点将海水捕获在腔室中,利用水位上升和下降的空气移动来旋转发电机。替代能源的替代来源是有利的,因为它们不依赖化石燃料,因此没有产生温室气体。它们可再生,这意味着它们的消费不会导致耗尽。建造水电坝有助于控制洪水,而使用太阳能炊具和加热器可以节省化石燃料。这些替代方案一旦建立了电厂,也只需要维护。此外,它只能安装在适合风模式的特定位置。但是,这些发电厂的初始安装很昂贵,建立风能农场需要大面积(每兆瓦的动力约2公顷)。风速通常达到约15 km/h。2。建立水力发电厂和建造水坝通常涉及水下淹没土地,这对水生生物和野生动植物产生了重大影响。在厌氧条件下淹没的植被腐烂,释放出甲烷气体。3。有限的地点可用于建立地热和潮汐能发电厂。4。核电站产生放射性废物和辐射,如果意外泄漏,可能会危险。5。在多云的日子,太阳能等可再生能源的效率较低。从这些信息中,我们可以得出结论,替代能源取代化石燃料,没有产生污染排放并有助于减少全球变暖。这些来源也可以续签,因为它们不可取证,负担得起和维护。
执行摘要 与基于数字位(取值 0 或 1)的传统计算截然不同,量子计算机的量子位 (qubits) 可以同时处理位值 0 和 1。利用这种能力,多个相互作用的量子位可以表示大量信息;与传统计算机相比,量子处理器中可以同时共存的二进制数呈指数级增长。即使面对摩尔定律(传统计算机的性能每隔一两年翻一番),仅几百个量子位的大规模纠缠量子态的复杂性就很容易超越传统信息处理的能力。大规模量子计算机的运行速度有可能比当今最先进的超级计算机快数百万倍 [1]。利用量子计算能力的国家将能够彻底改变医疗保健、通信、金融服务和交通运输等众多行业。了解量子计算对于维护国家安全以及商业和私人网络安全也至关重要,因为量子计算机可以破解基于大数分解的传统加密方法。这是全世界公认的事实。美国众议院科学、空间和技术委员会在 2018 年 9 月 13 日的一份声明中写道:“在量子计算领域取得全球领导地位将带来军事和情报优势,以及竞争优势,许多人预计未来几十年这个行业将成为一个庞大的产业。”当天,众议院一致通过了《国家量子计划法案》,将投资 12 亿美元用于一项计划,其中三分之一由美国国家标准与技术研究所 (NIST) 实施。目前,两种技术平台是实现大规模量子计算机的主要候选者:离子阱和超导量子比特,它们各有优缺点。虽然英国国家量子技术计划迄今为止优先考虑离子阱平台,但其他国家(美国、大多数欧洲国家、中国、俄罗斯、加拿大、日本)也分散了对两个平台的投资。大多数商业公司(例如 IBM、谷歌、英特尔、Rigetti、D-Wave、阿里巴巴)专门开发超导处理器。SQC 不再仅仅属于基础研究领域,而是成为了一场工程竞赛。有人将其比作过去的太空竞赛。近年来,基于超导芯片的量子计算机的成熟速度甚至超过了最大胆的专家预测。如今,规模相对较小但不太实用的超导量子计算机可以在网上供所有人使用。更大、功能更强大的超导处理器正在实验室中进行测试。由于量子计算对军事和安全的影响,一旦这些大规模量子计算机在不久的将来面世,就期望获得不受限制的访问权限,这种期望未免过于自满。多快呢?量子霸权,即超导量子计算机能够比最先进的传统超级计算机更快地解决特定问题,很可能在 2020 年之前实现,有些人甚至预测今年就能实现!英国科学家在超导领域做出了关键贡献。最近,我们还成功吸引了许多来自国外的 SQC 顶尖研究人员。多年来,我们的工程师已经创建了足以推动 SQC 发展的低温、纳米制造、软件和电子技术基础。NPL 的 SQC 测试和评估能力处于世界领先地位。本文的主要结论是,我们相信在国际舞台上,超导技术已经成熟到英国将其国家专业知识和设施整合在一起进行协调活动的水平。如果决定资助一个以生产工程系统为基础的重点管理项目,我们相信这将能够为英国提供最高水平的超导量子计算能力。