目录 表格列表 ................................................................................................................................ viii 图表列表 ................................................................................................................................ ix 1 简介 ................................................................................................................................ 1 1.1 主题领域 ................................................................................................................ 1 1.2 一般问题 ................................................................................................................ 3 1.3 项目说明和目标 ...................................................................................................... 4 1.4 论文布局 ................................................................................................................ 5 2 背景信息 ...................................................................................................................... 7 2.1 视线稳定 ............................................................................................................. 7 2.1.1 阻尼与稳定 ................................................................................................ 10 2.1.2 主动与被动 ............................................................................................................. 11 2.2 机载稳定平台 ................................................................................................ 11 2.2.1 无人机
光谱中的中波红外 (MWIR) 部分对于各种军事和民用应用都具有重要意义,包括分子指纹化学传感和热检测。传统上,在使用 MWIR 激光照射目标的应用中,光束通过万向节进行机械控制。虽然机械万向节具有一些优点,包括效率高,但它们通常体积大、重量重、耗电量大、转换速率相对较慢,而且由于它们包含多个电机和运动部件,因此需要频繁维护。这些特性加在一起,使机械万向节不适合新兴应用,包括安装在小型无人驾驶车辆上,因为这些车辆的部件允许尺寸和重量受到限制。需要新技术来摆脱与机械转向相关的缺点。
智能手机万向节的开发,通过使用微控制器和 MPU 6050 传感器,使其变得简单且更省钱。最近,摄像和图像处理的发展与智能手机技术的快速发展密不可分。最受欢迎的功能之一是相机。手部运动和冲击会导致最大效果减少。为了提高相机拍摄和视频的质量,必须有一个稳定器来稳定相机位置。因此,预计本文的结果能够为廉价的智能手机万向节做出贡献。万向节的设计和实现使用丙烯酸作为材料,厚度为 5 毫米。该 MPU 6050 传感器经过优化,可检测 X、Y 和 Z 轴的摆动或滚动、俯仰和偏航。陀螺仪和加速度计为微控制器提供输入,微控制器将处理 3 个伺服电机的输出,这些伺服电机的作用是将相机的位置保持在指定的设定点。结果表明,MPU 6050 传感器可以响应 1.34° 的滚动、0.25° 的俯仰和 0.78° 的偏航角度读数误差。伺服电机最大运动误差为 1.5°。因此,可以得出结论,万向架可以以更低的成本和更低的误差实现最佳工作。预计下一步研究将增加其他合适且精确的控制,即 PID 或模糊。
Teal Golden Eagle 是一款先进的便携式垂直起降 (VTOL) 四旋翼 sUAS,可为政府、公共安全和商业部门提供快速部署的情报、监视和侦察 (ISR) 能力。凭借其万向节红外和 4k EO 视频以及 12.3 MP 静态图像功能,应用包括快速响应、基础设施检查、监视和监控以及短程侦察,可提供超越下一个地形特征的态势感知。Golden Eagle 坚固耐用,重量轻且紧凑,可以使用航点导航手动或自主飞行。
Penguin B 具有可更换的通用有效载荷支架,可在几秒钟内拆卸并用于各种有效载荷。超过 20 升的有效载荷容量和高达 10 公斤的用户定义有效载荷可满足您的特定有效载荷要求。可伸缩万向节等精密有效载荷可安装到机身中,并有效利用可用空间。通用有效载荷支架具有预定的安装点,这些安装点在铝制框架中精确加工,以及可拆卸的压载块,可大大简化有效载荷集成过程。
10Pc 1/4 驱动 6 点套筒:5/32、3/16、7/32、1/4、9/32、5/16、11/32、3/8、7/16、1/2 10Pc 1/4 驱动 6 点公制套筒:4、5、6、7、8、9、10、11、12、13mm 6 Pc 1/4 驱动 6 点公制深套筒:4、5、6、7、8、9mm 3 Pc 3/8 驱动 PHILLIPS® 钻头套筒:#1、#2、#3 9 Pc 3/8 驱动 6 点套筒: 3/8,7/16,1/2,9/16,5/8,11/16,3/4, 13/16, 7/8 6 个 3/8 驱动 6 点公制深套筒:10,11 12, 13, 14, 15,mm 2 个 3/8 驱动延长杆 - 锁定:3, 6 (76, 152mm) 2 个 3/8 驱动火花塞公制套筒:16, 21mm 8 个 3/8 驱动 6 点 TORX® 套筒:E8, E10, E11, E12, E14, E16, E18, E20 11 个 3/8 驱动 6 点公制套筒: 9、10、11、12、13、14、15、16、17、18、19 毫米 4 件 1/2 驱动冲击 6 点公制套筒:17、19、21、23 毫米 4 件 1/2 驱动 12 点套筒:15/16、1、1-1/16、1-1/4 7 件 1/2 驱动 12 点套筒:20、21、22、24、27、30、32 毫米 6 件 3/8 驱动六角批头套筒 3、4、5、6、8、10 毫米 3 件 3/8 驱动 POZIDRIVE® 批头套筒:#1、#2、#3、12 件全抛光长面板组合扳手:8、9、10、11、12、13、14、15、16、17、18、19mm 3 件双盒反转公制棘轮扳手:8x9、12x13、17x19mm 7 件 1/4 驱动 TORX(孔)钻头:T-10、T-15、T-20、T-25、T-27、T-30、T-40 10 件六角扳手:1.5、2.0、2.5。 3.0、4、5、6、7、8、10mm 1 件 1/4 驱动梨形头棘轮,带舒适握把 1 件 1/4 驱动延长杆 100mm 1 件 1/4 旋转手柄 6 件 1/2 驱动深 6 点公制套筒:10、12、13、14、17、19mm 2 件 1/2 驱动延长杆:5、10(125、150mm) 3 件 3/8 驱动开槽钻头套筒:4、5.5、6.5mm 7 件 3/8 驱动 TORX® 钻头套筒:T-20、T-30、T-40、T-45、 T-50、T-55、T-60 1 件 1/4 驱动万向节 1 件 1/4 驱动适配器 1 件 3/8 驱动梨形头棘轮,带舒适握把 1 件 3/8 驱动万向节 1 件 1/2 驱动梨形头棘轮,带舒适握把 1 件 1/2 驱动万向节
AC 27-1B 和 AC 29-2C 中的指导不包含姿态系统的安装性能标准。AC 20-181 和 RTCA/DO-334 确实定义了不使用万向节传感器的捷联式 AHRS 的最低操作性能标准。但是,这些标准在 AC 27-1B 或 29-2C 中没有引用。不使用万向节传感器的捷联式 AHRS 系统的使用增加,其中可能包括校正对数,从固定翼过渡到旋翼机设计。这种转变给旋翼机安装带来了一些性能挑战。其中一些设计使用了固态加速度计(每个飞行轴一个),难以区分旋翼机运动和安装平台的正常振动频谱。此外,所使用的某些对数依赖于参数,在旋翼机低速环境中,这些参数会导致不可接受的误差。其他垂直起降飞机(如倾转旋翼机)也可能存在类似问题。DO-334 还定义了与传统旋翼机相关的可接受机动;但是,这可能不涵盖其他类型 VLOAL 的所有适当飞行测试参数,即:倾转旋翼机转换模式。在这些情况下,可能需要一份问题文件来定义额外的飞行测试机动。DO-334 表 2-1 定义了安装姿态性能的可接受性能标准,针对表 3-1 中定义的机动的动态条件类别 A5。除了表 2-1 中定义的机动之外,倾转旋翼机可能还需要其他机动。对于旋翼机/倾转旋翼机安装,DO-334 附录 A - 使用模拟验证设备性能是不可接受的。
在精准农业、林业管理、安全和监控等应用中,在无人机 (UAV) 上安装多个高光谱成像传感器的能力至关重要。imec UAV 平台由强大的嵌入式计算平台支持,该平台具有 NVIDIA Jetson GPU、集成存储、通过标准无人机万向节接口(如(但不限于)DJI Matrice 600)实现无线和有线控制连接。该 UAV 系统解决方案的设计理念是使最终用户能够从基于无人机的系统实时获取、处理和以视频速率下载应用数据。