Gurd家族引起了三代麦吉尔医师的兴起,他们在加拿大改变了外科手术,直到今天仍在持续影响。David Fraser Gurd于1879年毕业于McGill Medicine,并从事家庭医学和妇产科。他的儿子弗雷泽·伯德(Fraser B Gurd)于1905年毕业于1905年,他成为了在第一次世界大战中服役的外科医生,在那里他对裂缝产生了兴趣。在这里,他的实践还包括结核病和胸部感染。他建立了手术文凭课程,这是MGH,RVH,儿童和玛丽皇后老兵医院之间的第一个合并培训计划。他是美国外科医生学院的摄政副校长,中央外科学会主席,美国胸外科医生协会主席和美国创伤外科协会主席。 他是蒙特利尔综合医院的主管,也是麦吉尔外科部主席。 他的儿子弗雷泽(Fraser N Gurd)于1939年毕业于麦吉尔(McGill)。 他在第二次世界大战的约翰·霍普金斯(Johns Hopkins)实习,在他父亲的父亲下回到MGH训练,然后在宾夕法尼亚大学完成了研究研究金(Reynolds教授也在那里进行了研究奖学金的研究奖学金)之后(他的研究奖学金),Gurd博士与MGH的员工一起加入了员工。 他也是ACS的摄政王,担任中央外科协会主席和美国创伤外科协会,并担任的主席他是美国外科医生学院的摄政副校长,中央外科学会主席,美国胸外科医生协会主席和美国创伤外科协会主席。他是蒙特利尔综合医院的主管,也是麦吉尔外科部主席。 他的儿子弗雷泽(Fraser N Gurd)于1939年毕业于麦吉尔(McGill)。 他在第二次世界大战的约翰·霍普金斯(Johns Hopkins)实习,在他父亲的父亲下回到MGH训练,然后在宾夕法尼亚大学完成了研究研究金(Reynolds教授也在那里进行了研究奖学金的研究奖学金)之后(他的研究奖学金),Gurd博士与MGH的员工一起加入了员工。 他也是ACS的摄政王,担任中央外科协会主席和美国创伤外科协会,并担任的主席他是蒙特利尔综合医院的主管,也是麦吉尔外科部主席。他的儿子弗雷泽(Fraser N Gurd)于1939年毕业于麦吉尔(McGill)。他在第二次世界大战的约翰·霍普金斯(Johns Hopkins)实习,在他父亲的父亲下回到MGH训练,然后在宾夕法尼亚大学完成了研究研究金(Reynolds教授也在那里进行了研究奖学金的研究奖学金)之后(他的研究奖学金),Gurd博士与MGH的员工一起加入了员工。他也是ACS的摄政王,担任中央外科协会主席和美国创伤外科协会,并担任
S。Maqsood A,B,*,S。Mumtaz C,M。A. Javed D,M。Attiqus Salam A,E,E,Khalid M. Elhindi F A Lahore -54000 B物理学的Wahdat Road wahdat Road Govt的物理学系,GC Polysics(CASP),GC University,lahore colication and libiolicy kc and libioloy -54000 colohory -00000 co。大学,首尔01897,韩国d数学系,加利福尼亚大学,拉合尔-54000,巴基斯坦e物理系,GC大学,拉合尔-54000,巴基斯坦F植物生产系,食品与农业科学学院,国王Saud University,Saud University,P.O.Box 2460,Riyadh 11451,沙特阿拉伯在这项研究中,我们介绍了对卤化物双重perovskites CS 2 AUSBX 6(X = CL,BR,I)的特征的经验研究,并强调结构,机械,机械和光电元素,以及热电学能力。对热和结构耐用性的评估涉及测量制造和公差比的焓。在结构中相同位置用溴(BR)和碘(I)代替氯(CL)导致晶格特性的激增,并且大量弹性减少。使用弹性系数的模量计算弹性表明其柔性特征。对电带结构的检查表明,它具有间接的带隙特征。强调了许多特征的适用性,例如介电系数,灭绝系数,反射率,电子电导率,热电导率以及Seebeck系数,并强调用于光伏和热小工具。(2024年9月29日收到; 2024年12月5日接受)关键词:热性能,光学特征,双钙钛矿卤化物,间接类型的带隙半导体材料材料1。引入全球人口的指数增长以及各种高级电子设备的广泛利用导致能源需求的持续增长,而当前的化石燃料无法满足[1,2]。为了解决日益增长的全球能源消耗,获得可再生和环保能源至关重要[3]。专家正在积极寻求具有成本效益,环保且非常有效的能源替代方案来满足需求[4]。太阳能由于其可及性和生态友好而是所有形式的可持续能源之间的最佳选择[5]。根据研究结果,利用来自太阳的一个小时的光线可以产生足够的电能,以满足全年的全球电力需求。太阳能是丰富而强大的电力来源。如果我们利用并将其转变为电力,它有可能以当前形式维持全球人口二十七年的时间[6,7]。石油和煤中的所有能量与地球连续三天内接收的太阳辐射量相同[8,9]。太阳能是指太阳发出的电磁辐射,可以利用通过使用太阳能电池来产生温暖或电力[10]。太阳能电池可分为三代。最初的太阳能电池耐用且可靠,利用硅
3 乌兹别克斯坦塔什干国立研究大学 TIIAME 电力供应和可再生能源系 4 安集延农业与农业技术研究所,乌兹别克斯坦安集延 摘要。本文分析了使用太阳能光伏和水力发电组合装置的前景,并介绍了它们的特性和能量参数。特别是,由于水力发电装置由反向转子液压装置组成,因此研究了反应叶轮和主动叶轮的动态参数与液压装置效率之间的函数关系。基于获得的图表和解析表达式,分析了喷嘴液压涡轮的能量参数与液压装置设计参数之间的关系。 1. 简介 众所周知,地球上地下燃料资源的分布不均和限制损害了各国对燃料的经济依赖。全球范围内对热能和电力的需求不断增长,导致地下燃料的价格上涨。这种情况要求在所有领域合理使用可再生能源。半导体光伏的发展以新的应用科学研究领域为特征。半导体光电转换器 (FP) 分为三代:第一代 FP;第二代 FP 和第三代 FP。第二代和第三代 AF 的开发正在积极开展。数字建模方法的出现和深入发展使研究质量显著提高。全面实施经典和量子固体物理理论的可能性,大量实验数据信息库的形成使开展更高质量、更深入和更有成效的科学研究成为可能。在这方面,可以注意到以下在基础科学和应用方面最重要的方向。首先,值得特别注意的是,可以在第一代 FP 的基础上创建多边照明元件 [1]。在这个方向上进行的理论和实验研究表明,创建具有垂直 pn 结的矩阵 FP 具有良好的前景。这种 PC 在产生高输出电压和转换集中太阳辐射的任务中具有无可争辩的优势。此外,在多边敏感设计中实现这种 FP 可以将半导体硅的消耗量减少三到四倍。其次,人们非常感兴趣的是与 FP 在干燥、炎热、大陆性和多尘气候中的运行相关的科学和应用研究,例如在中亚共和国。因此,制造适应大陆气候变化的太阳能光伏装置的任务仍然重要。在这方面,开发和实施 3D 格式的太阳能光伏电站很有前景,其中首次排除了使用平板 [2]。应该指出的是,这种发电厂在转换集中的太阳辐射方面具有竞争力。可再生能源初级潜力的自然不稳定性在全世界仍然是一个未解决的问题。因此,为了从可再生能源中获得持续的能源,正在积极开展应用研究,以创建混合发电厂:“太阳能-风能”[3]、“太阳能-光伏”、“太阳能-光伏-热能”、“太阳能-水力”[4]、“风力-水力”和“太阳能-风力-水力”。基于这项研究的结果,开发的太阳能装置的成本将降低,其经济效率将提高。然而,在小体积中积累大量的太阳辐射会导致
对生物机制的理解使得开发第一种靶向疗法成为可能。这些疗法最初针对的是导致疾病或与疾病特别相关的蛋白质。对 ER 在乳腺癌中的作用的理解以及对其阻断机制的识别推动了针对所谓“激素依赖性”乳腺癌(ER 阳性、雌激素受体阳性)的激素疗法的开发。他莫昔芬现在是 ER 阳性乳腺癌的标准治疗方法。它通过竞争性抑制雌二醇与其受体的结合起作用(Jordan,2003 年)。针对特定表位的单克隆抗体也构成了一类非常重要的靶向疗法。它们彻底改变了哮喘等炎症性疾病的治疗(Pelaia 等人,2017 年)。然而,对导致疾病的基因变异的识别为使用靶向疗法提供了主要动力。例如,相互易位t(9; 22),即费城染色体,是慢性粒细胞白血病 (CML) 的标志。因此,t(9;22) 易位最先用于确诊 CML (Heisterkamp 等,1990 年;Rowley,1973 年)。这种易位会产生异常的融合基因 (BCR-ABL)。由此产生的 BCR-ABL 融合蛋白由于其组成性酪氨酸激酶活性而具有致癌特性 (Lugo、Pendergast、Muller 和 Witte,1990 年)。与蛋白激酶催化位点结合的 ATP 竞争性抑制剂的开发导致了一种特异性疗法:伊马替尼或 Gleevec ®,从而彻底改变了 CML 和其他疾病的治疗方式 (Kantarjian 和 Talpaz,2001 年)。同样,致癌 NTRK(神经营养性原肌球蛋白相关激酶)融合基因的鉴定最近导致了特异性抑制剂(larotrectinib 或 Vitrakvi ®、entrectinib 或 Rozlytrek ®)的开发,用于治疗成人和儿童的 NTRK 阳性癌症(Cocco、Scaltriti & Drilon,2018 年)。在肿瘤学中,针对复发性点突变的特异性抑制剂也得到了广泛开发(Martini、Vecchione、Siena、Tejpar & Bardelli,2012 年;Skoulidis & Heymach,2019 年)。在某些情况下,会产生很少或根本不产生蛋白质。胰岛素就是这种情况,胰岛素依赖型糖尿病(I 型)患者缺乏这种酶。患者接受胰岛素疗法治疗,通过施用替代蛋白质来忠实重现胰岛素生理分泌的效果。 1982 年,第一种人类胰岛素蛋白上市,开创了一种新模式:可以修改激素蛋白的序列,使其药代动力学特性与患者的生理需求相匹配(McCall & Farhy,2013 年)。除了这些“蛋白质特异性”疗法外,还开发了针对 DNA(脱氧核糖核酸)的方法。至于蛋白质,最初的治疗尝试是基于对 DNA 的整体改变,例如通过使用烷化剂。这些药物会诱导非特异性共价键的产生,从而产生 DNA 加合物。它们会破坏复制和转录,这解释了它们在癌症治疗中的用途(Noll、Mason 和 Miller,2006 年)。插入也是小平面分子与 DNA 的一种特殊结合模式。它们会改变 DNA 的构象,破坏 DNA 和 RNA 聚合酶的活性(Binaschi、Zunino 和 Capranico,1995 年)。靶向 DNA 的分子并不局限于肿瘤学应用。例如,甲氨蝶呤是一种在细胞周期 S 期抑制核酸合成的抗代谢物,它已经取代了传统上使用的银盐用于治疗类风湿性关节炎(Browning、Rice、Lee 和 Baker,1947 年)。除了这些以非特异性方式与 DNA 相互作用的分子之外,人们还设想了针对性策略,以纠正导致疾病的有害基因。这种方法被称为基因疗法(Kaufmann、Büning、Galy、Schambach 和 Grez,2013 年)。一个非常有前景的例子(正在申请上市许可 [MA])涉及治疗 β 地中海贫血症,这是一种血红蛋白遗传性疾病。在这里,患者的干细胞被分离并被改造以替换有害基因,这样它们就可以产生正常的血红蛋白。然后将改造后的细胞注射回患者体内(Cavazzana-Calvo 等人,2010 年;Thompson 等人,2018 年)。这些令人惊叹的方法可以用于治疗许多疾病,包括糖尿病,尽管它们的实施非常复杂。最后,长期以来被认为是简单中间分子的 mRNA 最近已成为感兴趣的治疗靶点。 mRNA 是精细转录和转录后调控的位点,与许多疾病有关。因此,近年来 RNA 分子也受到关注,因为这些分子与蛋白质和 DNA 一样,是开发靶向疗法的候选分子(Disney、Dwyer 和 Childs-Dis-ney,2018 年)。第一种反义寡核苷酸 (ASO) 就是在这种背景下出现的。ASO 是单链合成 RNA 或 DNA 分子,平均长度为 12 至 25 个核苷酸。它们的序列与其靶标的序列互补,以确保特异性。因此,ASO 的序列由其靶标的序列决定。此外,这些分子可以定位在细胞质和细胞核中,从而可以到达细胞质和/或细胞核靶标(参见 Potaczek、Garn、Unger 和 Renz,2016 年的综述)。 ASO 经过化学改性,免受核酸酶的作用(否则会降解它们),并允许它们穿过质膜而无需矢量化。根据这些变化,ASO 可分为三代(如下所述)(图 1)。ASO 的化学性质很重要,因为它决定了其作用方式(降解目标 RNA 或掩盖位点而不降解)。因此,ASO 可以进行广泛的调节,