•NX-5948在4(DC 50 = 0.16 nm)和24小时(DC 50 = 0.03 nm)时促进WT BTK的有效降解•获得的抵抗突变减少或废除抗抗增殖物的抗增殖性,以抑制BTK抑制剂的抗抑制作用,并抑制btk的抑制作用,以抑制btk的抑制作用,以抑制btk的抑制作用,以抑制btk的活动。增殖。活性位点中的单个氨基酸变化通常足以显着降低目标占用率。•与以占用驱动的药理学相比,靶向蛋白质降解器采用事件驱动的药理学,诱导具有E3连接酶的三元络合物来促进靶标泛素化。此外,靶蛋白与E3连接酶之间的其他相互作用可以提高三元络合物相对于二进制复合物的稳定性。•NX-5948诱导BTK和CRBN之间的正合作关系,并保留了降解C481S,V416L,T474I和L528W突变体BTK的能力,无论观察到的NX-5948对V4116L和L5528的二进制结合亲和力丧失。•NX-5948显示出与已发表的BTK降解器相比,新型BTKI抗性突变的覆盖范围,特别是在T474i和V416L突变的背景下。•抑制剂和降解器对TMD8细胞上CD86表达的下调与NX-5948的抗增殖作用密切相关。•NX-5948下调突变体TMD8细胞上的CD86表达,并保留抑制具有C481S,V416L,T474I和L528W突变的细胞增殖的能力•NX-5948在蛋白质组学评估中高度选择性地选择了BTK降解;在原代T细胞,TMD8细胞,NX-5948治疗的MM-1R细胞中未鉴定出明显的直接外靶标•NX-5948的1A/B期试验正在进行复发或难治性B细胞恶性肿瘤的患者(NCT05131022)。
探测原子形成的多苯胺/多吡咯/碳纳米管纳米管纳米复合材料Pawan Sharma,1 Kartika Singh,1 Akshay Kumar,2 Deepak Kumar,2 Harish Mudila,1 Harish Mudila,1 Udayabhaskar Rednam,3 P. E. Lokhan,3 p.e. lokhan and* Kumar 1, *抽象化学氧化聚合已用于合成聚苯胺/多吡咯/碳纳米管(PANI/PPY/CNT)三元纳米复合材料。过硫酸铵和盐酸分别用作氧化剂和掺杂剂。在这些纳米复合材料中,PPY充当Pani和CNT基质中的填充剂。应用各种物理化学技术来评估纳米复合材料的结构和热性质。观察到,与1 wt%,2 wt%和4 wt%的PANI和CNT矩阵中的负载相比,0.5 wt%的PPY载荷表现出更大的结晶度和热稳定性。
曾经假定需要完全精确的计算以获得深入NNS(DNN)的准确结果。最近,研究人员确定了这些模型的较低精度,量化甚至三元或二进制变体可以使用计算资源的一部分来达到适当的精度水平。这些量化的NN(QNN)现在可以使用较低的功率,最小资源,嵌入式芯片(SOC)和FPGA进行实施。sec。3捕获了核心的学习,差距和机会,从QNN文献中进行了进一步的创新。使用卷积NNS(CNN)实施的模式识别算法非常适合太空探索和无人驾驶飞机,并且可以使用这些应用程序使用来基于捕获的图像来识别和分类对象[2]。由于其低成本,低功率消耗和灵活性,FPGA提供了有效实施NNS
航空勘探(能谱、磁测)测量是地质填图的有效辅助手段。它能有效测量研究区内自然界最常见的三种放射性元素(K、eU、eTh)的磁场特征和表面含量。由于不同岩性单元的磁特征和放射性元素含量存在很大差异,可将其应用于浅覆盖区填图。三元MAP是一种复合成像技术,可在同一像素上同时显示放射性元素含量。该技术基于颜色差异,可有效识别某一区域内同一岩性单元内的不同岩性和岩面变化。通过航磁数据转换和综合能谱图像,在安哥拉西北部研究区取得了1:25万岩性-构造填图的良好效果。
锂离子电池(LiB)由正极、负极、电解液、隔膜等组成。将活性物质、导电剂、粘结剂等在有机溶剂中混合的浆体涂敷在金属膜(集流体)上,经干燥后形成电极。N-甲基-2-吡咯烷酮(NMP)是溶剂型浆体中使用的有机溶剂,尤其在正极的质量控制中,需要在干燥过程中检测正极中NMP的残留量。本文介绍了一种利用顶空法GC-FID简便分析锂离子电池NCM(镍钴锰三元材料)正极中残留NMP的方法。此外,还给出了利用GC-MS定性分析NCM正极中残留的其他溶剂的结果,以及对采用不同干燥工艺的五种正极中残留溶剂量的比较。
细胞资源在细菌蛋白质中的分布已通过现象学生长定律量化。在这里,我们描述了一种补充性的 RNA 组成细菌生长定律,该定律源于细胞资源在核糖体和三元复合物中的最佳分配。预测的 tRNA/rRNA 比率随生长速度下降与实验数据在定量上一致。它的调节似乎部分是通过染色体定位来实现的,因为 rRNA 基因通常比 tRNA 基因更靠近复制起点,因此在更快的生长速度下其基因剂量会越来越高。在大肠杆菌中,在最高生长速度下,基于染色体位置的 tRNA/rRNA 基因剂量比几乎与观察到的、理论上最佳的 tRNA/rRNA 表达比相同,这表明染色体排列已经进化到有利于这种条件下两种类型基因的最大转录。
图1:捕获NeoSurface属性以识别接口站点和绑定伙伴。A.计算配体 - 蛋白质络合物的几何特征,包括分子表面表示(MSM),水疗评分,质子供体/受体和泊松玻璃托型静电仪。表面特征在描述符(也称为“指纹”)中进行了矢量,并被Masif-Neosurf用于界面倾向预测或蛋白质伴侣搜索。然后使用含配体的指纹来在补丁数据库中找到互补的指纹。B.在已知三元复合物和200个诱饵的基准数据集上使用MASIF-NEOSURF进行排名预测。在相应的小分子配体的存在(橙色)和不存在(蓝色)的情况下,进行了补充伴侣搜索。c-d。与一组随机的贴片对准(灰色)
引入或加强两种蛋白质之间的复合形成具有调节大量生物学过程的潜力,从而提供了可药物靶向空间的主要增加。(P1)复合诱导剂或稳定剂包括分子胶质,这些胶水抑制了复合物中一种蛋白质的功能,以及不同的异性功能化合物,可介导靶蛋白的翻译后修饰的调节或通过蛋白酶体或Lysososes中的蛋白酶降解。蛋白水解靶向嵌合体(Protac)是异性功能的化合物,该化合物由通过连接器连接到另一个结合E3泛素连接酶的靶蛋白的配体组成。(p2)protac诱导的三元复合物形成导致蛋白酶体泛素化和随后降解靶蛋白。大多数Protac都基于Cereblon(CRBN)或Von Hippel-Lindau(VHL)E3 Gimase配体。(p3)
摘要:靶向蛋白质降解已成为一种抗癌替代疗法,与传统抑制剂相比具有多种优势。新型降解药物提供了不同的治疗策略:它们可以通过向细胞外蛋白质添加特定部分来穿过磷脂双层膜。另一方面,它们可以通过生成 E3 连接酶的三元复合物结构来有效改善降解过程。在此,我们回顾了基于 TAC 的技术 (TACnologies) 的当前使用趋势,例如蛋白水解靶向嵌合体 (PROTAC)、光化学靶向嵌合体 (PHOTAC)、CLICK 形式的蛋白水解靶向嵌合体 (CLIPTAC)、自噬靶向嵌合体 (AUTAC)、自噬体束缚化合物 (ATTEC)、溶酶体靶向嵌合体 (LYTAC) 和去泛素酶靶向嵌合体 (DUBTAC),在实验开发及其在临床应用方面的进展。
摘要。已经开发了ECHAM5/MYSY AT- MOSPHER化学模型(EMAC)的子模型PSC,以模拟极性平流层云的主要类型(PSC)。子模型中超冷三元溶液(STS,1B PSC)的参数化基于Carslaw等人。(1995b),在Marti和Mauersberger上模拟冰颗粒(2型PSC)的热力学方法(1993)。存在硝酸三水合物(NAT)颗粒(1A型PSC)的形成两个不同的参数。首先是基于Hanson和Mauersberger(1988)的瞬时热力学方法,第二个是新的,并借助于Carslaw等人的表面生长因子来考虑NAT颗粒的生长。(2002)。可以在子模型中选择此NAT参数之一。本出版物解释了子模型PSC的背景和使用子模型的使用,目的是模拟EMAC中的现实PSC。