1 魏思奇 , 余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 .基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料 .高分子学报 , 2024 , 55(3), 338 - 348.2 Sun, T. L.; Gong, X. L.; Jiang, W. Q.; Li, J. F.; Xu, Z.B.; Li, W. H. Study on the damping properties of magnetorheological elastomers based on cis -polybutadiene rubber.Polym.Test , 2008 , 27(4), 520 - 526.3 Prasertsri, S.; Rattanasom, N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system.Polym.Test , 2011 , 30(5), 515 - 526.4 Liu, C.; Fan, J.; Chen, Y.Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range.Polym.Test , 2019 , 79, 106003.5 Soleimanian, S.; Petrone, G.; Franco, F.; De Rosa, S.; Kołakowski, P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator.Appl.Acoust., 2024 , 217, 109861.6 唐征海 , 郭宝春 , 张立群 , 贾德民 .石墨烯 / 橡胶纳米复合材料 .高分子学报 , 2014 , (7), 865 - 877.7 Xia, S.; Chen, Y.; Tian, J.; Shi, J.; Geng, C.; Zou, H.; Liang, M.; Li, Z.Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers.Adv.Funct.Mater., 2021 , 31(26), 2101143.8 Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X.Effects of graphene on various properties and applications of silicone rubber and silicone resin.Compos.Part A: Appl.Sci.制造。,2021,142,106240。9刘z。 Shi,J。; Zhao,n。; Li,Z。通过环状三磷酸磷酸基碱催化的环环(CO)聚合物化,高分子量的高分子量聚二乙基硅氧烷和随机聚二甲基氧烷-Co-二甲基硅氧烷)共硅氧烷。欧洲。polym。J.,2022,173,111280。10什叶,J。; Liu,Z。; Zhao,n。; Liu,s。; Li,Z。由三挥手有组织酶催化为明确定义的聚(二甲基硅氧烷)S催化的己二甲基甲硅氧烷的己二甲硅氧烷的控制环的聚合。大分子,2022,55(7),2844-2853。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。 介电硅橡胶的工业选择。 J. Appl。 polym。 SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。介电硅橡胶的工业选择。J. Appl。polym。SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。SCI。,2023,140(37),E54405。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。橡胶化学。技术。,1986,59(2),255-262。13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。Macromolecules,2017,50(9),3532-3543。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。J. Appl。polym。SCI。SCI。,2019,136(12),47231。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。 聚合物,2020,186,122077。 16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。聚合物,2020,186,122077。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。polym。测试。,2021,93,106885。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。J. Appl。polym。SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2023,140(1),E53262。18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。polym。eng。SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2024,10.1002/pen.26663。19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。J. Appl。polym。SCI。 ,2011,119(5),2737-2741。SCI。,2011,119(5),2737-2741。
应变,按下尽可能多的液体。您应该有大约1汤匙液体。使用前冷却5分钟。为贝尔纳斯酱,将黄油轻轻融化在锅中。站立30秒钟,直到乳白色固体定居在底部。倒出175克澄清的黄油,丢弃剩下的乳白色。热时在此食谱中使用。将蛋黄,注入醋和盐放入一个高大的狭窄容器中,搅拌器棒一直适合底部。短暂闪电战。将棒搅拌器高高地慢慢淋上澄清的黄油,大约一分钟。添加了所有黄油后,闪电队再闪电10秒钟,上下移动棍子。调整一致性,加入1汤匙水,然后闪电以掺入。根据需要添加更多的水,一次每次1茶匙,直到贝尔纳斯酱是浓而柔软的酱汁,而不是流鼻涕。搅拌龙龙和cher。立即使用或在温暖的地方保持温暖,直到需要。
©2020。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
摘要:研究了基于原位形成的亚胺连接低聚物的各种坚固、结晶和多孔有机骨架。这些低聚物通过液-液界面反应通过协同的分子间氢键相互作用进行自组装。可溶性低聚物是具有多个未反应醛基的动力学产物,这些醛基充当氢键供体和受体,并引导所得低聚物组装成 3D 骨架。坚固的共价键和高度可逆的氢键的顺序形成增强了长程对称性并促进了大单晶的生成,其结构可通过单晶 X 射线衍射明确确定。独特的分级排列增加了亚胺键的空间位阻,从而阻止了水分子的攻击,大大提高了稳定性。骨架中的多个结合位点使得能够快速封存水中的微污染物。
马来西亚马来西亚斯巴赫大学的工程学院Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia D Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia E Catalysis Science and Technology Research Center, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia, Malaysia马来西亚UPM,UPM,UPM的种植园研究所,马来西亚G可持续发展科学与技术研究所,Unversitat Polyt polyt polyt polyt`Adennica de catalunya,西班牙,西班牙的社会科学与人文学院肯塔基州化学工程大学学院,211 Crounse Hall,4810 Alben Barkley Drive Paducah,肯塔基州42002,美国,美国
电动汽车:电动汽车中的电池增加重量。为了安全性和效率,必须通过在汽车的其他组件中使用较轻的材料来补偿这种体重的增加。因此,电动汽车的吸收将推动对塑料的需求。,美国化学委员会已经估计,从2012年到2021年,每辆车的塑料量已增加16%,平均为411磅。13行业领导的市场研究估计,电动汽车塑料市场将从2022年的37亿美元增长到2027年的126亿美元。14个电动汽车生产商已经开始考虑如何使供应链净零。大众汽车的净目标包括其供应链,而通用汽车在2023年在其车辆中使用了超过3900万磅的可回收塑料,并设定了目标以增加此数量,EV生产商Rivian的目标是40%的回收和生物含量,用于在其车辆中使用的基于2030年的产品中的基于20303030。15,16,17
摘要对于实现联合国可持续发展目标(SDG)至关重要,加强对国家和地区范围内土壤的特性和过程的理解至关重要。这项研究的目标是去除由于基于纳米材料的氮化硼纳米层(B 5 N 10 -NC)而导致的土壤中Cr,Mn,Fe,Zn,W,CD的过渡金属。通过材料建模描绘了被困在B 5 N 10 -NC中的有毒过渡金属的电磁和热力学属性。已经研究了B 5 N 10 -NC的Cr,Mn,Fe,Zn,W和CD捕获的行为,用于感测土壤金属阳离子。b 5 n 10 -nc是在过渡金属(Cr,Mn,Fe,Zn,W,CD)的存在中设计的。案例表征是通过DFT方法进行的。这些配合物的共价特征的性质代表了B 5 n 10 -NC中的P状态和氮之间的类似能量和视力,具有Cr,Mn,Mn,Fe,Fe,Zn,W,x↔B5 N 10 -NC Complexes的B 5 N 10 -NC。此外,核磁共振(NMR)分析表明,通过在原子检测过程中B 5 N 10 -NC中的捕获中,Cr,Mn,Fe,Zn,W和CD周围的峰值峰,从土壤中捕获和去除。但是,可以看出各向同性和各向异性张量的化学屏蔽处理中有些波动。基于这项研究的结果,b 5 n 10 -
摘要。ternary LWE,即具有秘密系数的LWE,而从{ - 1,0,1}取的错误向量是NTRU-Type Cryptosystems中的一个流行选择,以及Bliss和GLP(例如Bliss and GLP)的某些特征方案。在这项工作中,我们考虑对三元LWE的量子组合攻击。我们的算法基于Magnieznayak-Roland-Santha的量子步行框架。我们算法的核心是一种称为表示技术的组合工具,它出现在子集总和问题的算法中。此技术也可以应用于三元LWE,从而产生更快的攻击。这项工作的重点是用于基于代表性的LWE攻击的量子加速。用LWE密钥的搜索空间表示表示时,表示攻击的Asymp-Totic复杂性从S 0降低。24(经典)降至S 0。19(量子)。这转化为明显的攻击的速度 - 用于NTRU-HRSS [CHES'17]和NTRU PRIME [SAC'17]等具体NTRU实例。我们的算法不会破坏当前对NTRU或其他基于三元LWE的方案的安全性要求,但它们可以为在LWE的混合动力攻击中改善组合子例程的改善。
摘要:最近的计算研究预测了许多新的三元氮化物,揭示了这一尚未充分探索的相空间中的合成机会。然而,合成新的三元氮化物很困难,部分原因是中间相和产物相通常具有较高的内聚能,会抑制扩散。本文,我们报告了通过 Ca 3 N 2 和 M Cl 4(M = Zr、Hf)之间的固态复分解反应合成两个新相,钙锆氮化物(CaZrN 2 )和钙铪氮化物(CaHfN 2 )。虽然反应名义上以 1:1 的前体比例通过 Ca 3 N 2 + M Cl 4 → Ca MN 2 + 2 CaCl 2 进行到目标相,但以这种方式制备的反应会产生缺钙材料(Ca x M 2 − x N 2 ,x < 1)。高分辨率同步加速器粉末 X 射线衍射证实,需要少量过量的 Ca 3 N 2 (约 20 mol %) 才能产生化学计量的 Ca MN 2 。原位同步加速器 X 射线衍射研究表明,名义化学计量反应在反应途径早期产生 Zr 3+ 中间体,需要过量的 Ca 3 N 2 将 Zr 3+ 中间体重新氧化回 CaZrN 2 的 Zr 4+ 氧化态。对计算得出的化学势图的分析合理化了这种合成方法及其与 MgZrN 2 合成的对比。这些发现还强调了原位衍射研究和计算热化学在为合成提供机械指导方面的实用性。■ 简介