cat4can:癌症治疗的催化摘要肿瘤的发病率和死亡率不反应护理标准或其他靶向疗法是这些癌症患者临床管理的主要挑战。为了为治疗难治性患者提供创新的治疗途径,迫切需要开发出抗癌药物模式的新机制,以克服当前疗法的缺点。在CAT4Cancenter中,我们将合并基于癌症生物学和免疫学的药物开发和创新途径的基于金属催化的研究领域,适用于最致命的癌症之一,胶质母细胞瘤(GBM),胶质母细胞瘤(GBM)是一种致命的原发性脑肿瘤,因为它的位置在脑部parechyma和Complect parechonma complend parechonma complectirar promocrom never the Complect not corn疗法。许多潜在的药物由于其固有的毒性和脱靶副作用而在诊所中失败,这加剧了到达受保护的大脑部位的挑战。最近,在存在生物分子的情况下,创新的催化剂设计实现了合成转化。在CAT4Cancenter中,我们将开发四种创新方法来治疗GBM。这种新方法需要设计笼子受保护的催化剂,该催化剂将使用先进的脂质纳米粒子技术将其传递给靶向细胞类型。接下来,催化剂将无毒前药转化为GBM批量内的活性药物。我们的开创性策略旨在通过开发互补的方法来解决该疾病的复杂性,以成功治疗胶质母细胞瘤。将从细胞媒体上详细研究新的策略,催化剂和前药,再到体外模型的体外和最新技术,这需要具有互补技能的专家实验室。通过任命将在多个实验室工作的研究人员,我们将确保(超分子)催化(REEK),药物输送系统(KROS)和临床前研究(Akkari)之间的知识有效地转移。
进行了为期7个月的玻璃屋研究,以评估生长的生长反应,养分状态和非酶抗氧化剂的特性,其在不育Ultisol上生长的大肠杆菌幼苗的性质,这些卵子在不育Ultisol上生长,这些化学肥料(CF)和商业生物含量(IBG)的化学肥料(CF)和商业生物含量(IBG)的不同组合如下。 BioFertilizer [T3] 50%CF + 50%IBG生物肥料[T4]仅70%CF和[T5]绝对控制。与CF100相比,CF70和IBG30的组合的组合使幼苗的生长增加了15.8%,其新鲜芽和根重量和理想的根与射击比率明显更高。绝对控制幼苗在所有观察到的pa-Rameter中表现出不太理想的表型性状。记录了用CF70 + IBG30处理的幼苗的相对叶绿素水平明显较高,该幼苗与叶绿素A /B比正相关。此外,生物肥料和化学受精允许增加养分的摄取,其中较高的B和P摄取率与增强的FROND产生呈正相关(P <0.05),而较大的根部质量与原发性生长特征相关。The positive impacts of the com- bined IBG biofertilizer and chemical fertilizer application were likely attributed to enhanced ac- cumulation of non-enzymatic antioxidants to counteract the effects of soil infertility, with seedlings in CF70 + IBG30 mostly recorded the highest phenolic, anthocyanin, flavonoid, photo- synthetic pigments, DPPH radical activity and proline levels.
摘要:土壤环境及其生物多样性是人类健康的基础,但目前,大规模的土壤退化正在引起土壤污染和威胁人类的发展。在这种情况下,与基于自然的解决方案相比,使用自然解决方案来恢复原始污染的土壤资源并改善可持续性,这是解决与土壤污染相关的问题,这是一种适当且可持续性的方法。在本文中,我们根据植物,土壤微生物,生物炭和土壤动物以及基于人工湿地,非密集的农业管理和绿色的自然材料的行动,基于植物,土壤微生物和土壤动物的污染措施以及针对工程的基于工程的措施,采取了基于自然的补救措施,并针对工程湿地采取了针对工程的措施。修复过程和结果。重点是基于自然解决方案在土壤恢复过程中的额外好处,以增强生物多样性和人类健康。
您必须将项目细分为里程碑。您应该包括每个里程碑发生的关键活动。里程碑 1 的开始日期是预期的项目开始日期。最后一个里程碑活动的结束日期将是项目结束日期。您需要填写以下字段。您最多可以添加 10 个里程碑。
最近的科学数据表明,纳米技术有可能对农业部门产生积极影响,同时最大程度地减少了农业实践对环境和人类健康的不利问题。这些因素最终将提高粮食安全和生产力(按预测的全球人口增长所要求),同时促进社会和经济公平。在农业中已经设想了广泛的潜在纳米技术应用,从而导致学术和工业水平的研究加剧。此外,除了纳米级材料的独特特性外,高的表面与体积比率使它们成为适合设计和开发新型工具以支持可持续农业的候选者。纳米技术在多种应用中也很好地提供了自身,例如肥料,传感器,过滤和农药,仅举几例。
随着过去一个世纪见证的技术进步的显着进步,对能源及其消费的需求激增。因此,随着社会朝着严格的环境政策驱动的,社会努力朝着更清洁的能量未来而努力,从化石燃料中出现了显着转变。目前,各种电池技术,包括超级电容器,锂离子电池(LIB)和锂 - 硫电池,由于其出色的储能能力和转换效率,引起了人们的关注。然而,重要的是要解决这些电池中电极和电解质所面临的重大容量和稳定性挑战,因为它们可能在操作过程中导致性能降解。因此,迫切需要进一步的进步和电池技术开发的改进。19,20
ETES 有望成为用于产生低碳工业热能的技术组合的一部分。氢热尚未实现商业化,预计由于氢气生产过程中的能量损失,其成本将远高于 ETES。热泵将电能转化为热能的能源效率高于 ETES(热泵的效率为 200%-300%,而 ETES 的效率为 90%-95%),因此通常比 ETES 更具成本竞争力。然而,热泵可能需要进行大量的现场改造,而且热泵目前还无法达到 200ºC 以上的温度,而超过一半的工业热能需求是 200ºC 以上的温度。3 电锅炉可以提供与目前基于 ETES 的锅炉相同的温度。随着两种技术的进一步发展,未来的电炉预计将能够达到与未来 ETES 系统类似的温度水平(1,000ºC 以上)。然而,热泵、电锅炉和电炉等不灵活的基本负荷需求需要额外的投资(无论是在电网还是在现场存储方面),才能将可再生能源的间歇性电力转化为连续电力。
摘要。催化冷凝器稳定电荷在高K介电膜的任一侧,以调节催化层的电子状态,以用于对表面反应的电子控制。在这里,碳溅射提供了用于快速,大规模制造的工业应用所需的金属碳催化冷凝器。碳膜在HFO 2介电/P型Si上被溅射,其厚度不同(1、3、6、10 nm),并且在400°C下热处理后碳厚度增加后,观察到电导率和碳膜电容的增强。在PT沉积在碳膜上后,PT催化冷凝器的高电容率为〜210 nf/cm 2,其频率约为1,000 Hz,满足了动态催化剂以实现催化催化剂的需求。温度编程的一氧化碳的解吸产生的CO吸收峰在温度下移动,其电势施加在冷凝器(-6 V或6 +V)(-6 V或6 +V)上,表明PT冷凝器表面上碳一氧化碳的结合能的变化。在400°C的升高温度下观察到电容(约2,000 nf/cm 2)的电容(约2,000 nf/cm 2),当应用10 V电势时,每个金属原子的电荷约为10%。42 cm 2面积PT/C/HFO 2/Si的大型催化冷凝器表现出9,393 NF的高电容,泄漏电流/电容电流比(<0.1)低,表明了宽敞的金属制造方法,用于金属型碳酸金属型制度型持久性。
强相互作用系统中的量子信息动力学,即所谓的量子信息加扰,最近成为我们理解黑洞、奇异非费米液体中的传输以及量子混沌的多体类似物的共同线索。到目前为止,经过验证的加扰实验实现主要集中在由两级量子比特组成的系统上。然而,高维量子系统可能表现出不同的加扰模式,并且预计会使量子信息加扰速率达到推测的速度极限。我们通过实现基于超导量子三元组(三级量子系统)的量子处理器,迈出了访问此类现象的第一步。我们展示了通用两元组加扰操作的实现,并将其嵌入到五元组量子隐形传态协议中。测得的隐形传态保真度 F avg ¼ 0.568 0. 001 证实了即使在存在实验缺陷和退相干的情况下也存在扰乱。我们的远距传物协议与最近在实验室中研究可穿越虫洞的提案相关,它展示了在高维系统中编码信息的量子技术如何利用更大、更连通的状态空间来实现复杂量子电路的资源高效编码。