(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.17.638680 doi:biorxiv preprint
a Max Mousseron 生物分子研究所,UMR5247 CNRS,蒙彼利埃大学,ENSCM,药学院,15 avenue Charles Flahault,34093 Montpellier cedex 5,法国。 b 列日大学蛋白质工程中心生物大分子实验室,Allée du 6 août B6,Sart-Tilman,4000 列日,比利时。 c 意大利锡耶纳大学医学生物技术系,I-53100 锡耶纳。来自结构生物学研究所 - Jean-Pierre Ebel,UMR5075 CNRS,CEA,约瑟夫傅立叶大学,41 rue Jules Horowitz,38027 Grenoble cedex 1,法国。 e EMBL Outstation c/o DESY,Notkestrasse 85,D-22603 汉堡,德国。 f 安纳多鲁大学药学院药物化学系,26470 埃斯基谢希尔,土耳其。 g 德国尤斯图斯李比希大学跨学科研究中心生物化学与分子生物学系主任,Heinrich-Buff-Ring 26-32,D-35392 吉森,德国。 h UMR8226,法国国家科研中心,皮埃尔和玛丽居里大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 i UMR8261,法国国家科研中心,巴黎狄德罗大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 1 现地址:Symbiose Biomaterials SA,GIGA Bât. B34, 1 avenue de l'Hôpital, 4000 列日, 比利时。 2 现地址:法国克莱蒙费朗化学研究所,UMR6296 CNRS,克莱蒙奥弗涅大学,63000 克莱蒙费朗,法国。 3 现地址:昆士兰大学化学与分子生物科学学院,圣卢西亚,布里斯班,昆士兰州 4072,澳大利亚。 4 现地址:CERN,HSE/SEE/SI,CH-1211 Geneva 23,瑞士。 *通讯作者:电话:+33-(0)4 11 75 96 03;传真:+33-(0)4 11 75 96 41。电子邮件地址:jean-francois.hernandez@umontpellier.fr (J.-F. Hernandez); laurent.gavara@umontpellier.fr(L.加瓦拉)。
引言三唑三唑是五个成员的杂环化合物,具有三个氮(N)原子和两个双键。1,2,4-三唑及其融合的杂环衍生物的化学性质在近几十年来引起了很多关注,它们在合成和生物学上具有重要意义。许多在治疗上有趣的药物候选药物,例如抗真菌药,抗菌。镇痛。抗炎。抗肿瘤。抗病毒。抗惊厥药。抗焦虑。抗组胺药。cns兴奋剂和其他人。包括1,2,3-驱动器部分。[1-8]威胁生命的全身病毒和真菌感染在免疫损害的宿主中越来越普遍,越来越多地研究了三唑衍生物的INHA抑制作用。异尼二氮化物通常抑制INHA。 在FASH系统中的一个重要酶参与分枝杆菌霉菌酸的形成。 通常正在研究1,2,4-三唑的可能的抗病毒和抗肿瘤特性。 这些物质具有1,2,4-三唑残基的示例包括强抗病毒N-核苷利巴韦林和偶氮抗真菌氟康唑。 [9]异尼二氮化物通常抑制INHA。在FASH系统中的一个重要酶参与分枝杆菌霉菌酸的形成。通常正在研究1,2,4-三唑的可能的抗病毒和抗肿瘤特性。这些物质具有1,2,4-三唑残基的示例包括强抗病毒N-核苷利巴韦林和偶氮抗真菌氟康唑。[9]
摘要文章信息三唑并嘧啶是一种结构独特的杂环化合物,在药物化学中具有广泛的应用。三唑并嘧啶骨架的多功能性使得人们可以探索和开发具有多种药理特性的化合物。这篇文献综述涵盖了 2014 年至 2022 年期间,全面概述了三唑并嘧啶的合成、反应性和生物学特性研究。该综述总结了用于制备三唑并嘧啶的各种合成方法及其与不同试剂的反应。它还研究了它们的药理特性,例如抗 COVID-19 和抗癌作用,以及它们与相关靶点的分子对接分析。该综述旨在帮助更好地了解三唑并嘧啶在药物化学领域的潜在应用。这篇 2014 年至 2022 年的文献综述全面探讨了三唑并嘧啶,重点介绍了它们在药物化学中的多种应用。这篇综述旨在全面了解三唑并嘧啶的多功能性,为促进药物化学药物开发提供宝贵的资源。© 2024 Tim Pengembang Jurnal UPI
通过常规1,3-二极化的环载反应的硫唑 - 1,2,3-三唑杂种杂种2-(3-甲基甲基-4-(Prop-2-yn-1-氯氧基)苯基)-4-甲基硫代苯基硫酸苯甲酯基于单击反应。光谱数据,例如IR,1 H-NMR,13 C-NMR和质量,用于表征分子结构。合成的化合物对人胶质母细胞瘤细胞系的体外抗癌作用。与参考药物Temozolomide相反,一些IC 50值的有效活性为10.67±0.94 µm,4.72±3.92 µm和3.20±0.32 µm。针对胸苷酸合酶的计算研究表现出有利的对接得分和结合相互作用,例如H-键,π-π堆积和π-硫。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
通常,众所周知,1,2,4-三唑衍生物连续多种生物学活性涉及杀虫作用[6],抗菌[2,7],抗病毒[8],抗肿瘤[9],抗真菌[10]和抗炎性[11]。少数1,2,4-三唑衍生物也被广泛用于医学和农业,例如“ Bromuconazole和Fluconazole”很长一段时间以来用作商业抗杀菌剂[12],而抗癌药” Anastrozole和Vorozole却是最近发布的[13]。因此,我们在开发新的含氮的杂环化合物的工作中的关键部分是1、2、4-三唑亚结构映的设计和高效,这将是可预测的,可预测,可预测属于两种药物学的共有性。重氮化合物被认为是一种广泛的天然化合物。它们具有R – N 2 + X-,X的公式,X是阴离子,R是(芳基或烷基),如卤素。当r芳香族时,重氮盐是最重要的[14]。Sandmeyer生产
理论方法(例如量子计算和Monte Carlo(MC)模拟,由于学习结构的相对较快方法,在研究腐蚀抑制剂方面非常重要。在本文中,利用了几种半经验量子计算方法(AM1,PM3和PM6)来研究某些三唑的腐蚀抑制效率(CIE),作为金属腐蚀的抑制剂(降低了降低了降低了至1 m盐酸)。MC模拟技术用于本研究来计算吸附能。优化的基态几何形状,最高占用分子轨道(E HOMO)的能级,最低无占用分子轨道(E Lumo)的能级,吸附能和偶极矩(μ)与三氮化衍生物的CIE相关。建议三个方程式计算CIE。在CIE EXP和CIE计算之间发现了良好的协议。CIE EXP和CIE CALC之间的相关系数(R)位于0.931至0.955之间。AM1,PM3和PM6可有效测量CIE。 回归分析在非线性方程中包含吸附能时使用的量子参数较少。 e广告可以减少描述符数量,以创建易于使用和短暂的模型。AM1,PM3和PM6可有效测量CIE。回归分析在非线性方程中包含吸附能时使用的量子参数较少。e广告可以减少描述符数量,以创建易于使用和短暂的模型。
在我们的研究中,有机衍生物被用作环保绿色抑制剂,以防止HNO 3 1 m中的Cu溶解。这项研究是使用化学方法(例如质量损失方法(ML),电型动力极化(PP)和阻抗(EIS)技术进行的。从这些方法中获得的结果表明,随着这些物质浓度的增加,抑制效率(%IE)提高并达到95.1%。这些衍生物在铜(CU)表面上的吸附用于解释抑制作用。根据极化曲线,抑制剂是混合的。发现这些衍生物遵循Langmuir的吸附等温线。已使用了几种表面检查方法(扫描电子显微镜(SEM),EDX和傅立叶变换红外光谱法(FT-IR)。发现所有这些使用的方法彼此一致。关键字:CU,HNO 3,1,2,4-三唑衍生物,SEM,FTIR。
在生物医学,生物纳米技术和药物的结构域中,基于聚合物的药物纳米载体一直是针对靶向部位的药物递送的引人入胜的药物疗法。1 – 3 A wide range of diseases including neurological disorders, cardiovascular diseases, and malignancies can be treated and healed in a better and more e ffi cient manner using polymeric drug delivery systems owing to the targeted and controlled release of therapeutics, 4 – 6 thereby reducing the side e ff ects of drugs, especially those for cancer which is a major threat to human health a er cardiovascular疾病是人类死亡的主要原因。7 - 10,国际癌症研究机构(IARC)在2018年据报道,全球诊断为1,810万,预计到2040年增加到2950万。10癌症治疗仍然具有抗癌药物的高副作用,同时损害了身体快速增长的细胞以及足够的免疫反应中的肿瘤部位,导致不良侧面的影响,有11,12个解决此类问题,研究人员专注于
多年的研究致力于寻找实现这一目标的新的高效系统。在光驱动的CO 2降低中,[4]需要光敏剂(PS)来收集太阳能和催化剂(CAT)以减少二氧化碳。两者都可以是同质的或异质的。添加了牺牲电子供体(E-d)以关闭催化循环并再生光敏剂的基态。在同质系统中,PS和CAT均主要是基于过渡金属的,并且很少基于有机物。,[5],[6] [7],尽管贵金属具有出色的光化学和电化学特性(例如ru,ir,re),使用3D金属的环保替代系统(例如mn,Fe,co,ni)正在变得更有竞争力。[8]通常,3D金属仅表现出两个可能的氧化态,从而导致形成了两极的还原产物,例如一氧化碳,甲醛或甲酸或甲酸。分子氢是相关的,选择性差异很大。CO和H 2作为产品(也称为同性气)的混合物构成了以更生态的方式产生燃料的机会[9],要么是这样(用于燃气涡轮机)[10]或通过进一步的反应(例如产生甲醇)。[11]