单个量子点的塞曼分裂自旋态可与其光学三子跃迁一起使用,在静止(自旋)和飞行(光子)量子位之间形成自旋 - 光子界面。除了自旋态本身的长相干时间之外,三子态的极限退相干机制也是至关重要的。在这里,我们在时间分辨共振荧光中研究了施加磁场(高达 B ¼ 10 T)下单个自组装量子点中的电子自旋和三子动力学。量子点仅与电子库弱耦合,隧穿速率约为 1 ms 1 。使用这种样本结构,除了电子的自旋翻转速率和三子跃迁的自旋翻转拉曼速率之外,我们还可以测量将俄歇电子散射到导带的俄歇复合过程。俄歇效应会破坏辐射三子跃迁,使量子点保持空置状态,直到电子从储存器隧穿到量子点中。俄歇复合事件与随后从储存器隧穿的电子相结合,可以翻转电子自旋,从而构成限制自旋寿命的另一种机制。
上校,工学硕士(univ) Markus Knoll 于 1977 年 3 月 8 日出生于莱希河畔兰茨贝格 已婚,育有三子 自 2024 年 1 月 10 日起,他领导了第 62 航空运输联队
图 2. (a) 机械剥离的 MoS 2 的光学显微照片,其中单层区域突出显示。(b) 沉积 1 nm CoPc 之前和之后单层 MoS 2 的拉曼光谱。A 1g 和 E 2g 峰之间的间隔约为 19 cm -1 ,表明为单层 MoS 2 。1100 – 1500 cm -1 范围内的拉曼模式是 CoPc 的特征。(c) 机械剥离的 MoS 2 和含有 1 nm CoPc 的 MoS 2 的 300 K PL 光谱。A 激子和相关的三子在 675 nm 处很突出,由于 B 激子的存在,可以看到一个小的高能肩。(d) MoS 2 和含有 1 nm CoPc 的 MoS 2 的 10 K 光致发光。在此温度下,除了 660 nm 和 600 nm 处的 A 和 B 激子外,MoS 2 缺陷发射在 700 nm 处也变得明显,
在层状材料中,例如 MoS 2 等过渡金属二硫属化物 (TMDC),[ 24–27 ] 或其他可剥离材料,如 GaSe,[ 28 ] 激子在室温下主导其光学特性,这证明了它们具有很强的结合能。在磷同素异形体(如 BP)中观察到了激子物种,具有近红外发射。[ 29,30 ] 相反,VP 作为一种替代品出现,具有可见光范围的光致发光 (PL) 发射和更高的热稳定性,[ 17,21 ] 但对其激子效应的研究仍处于起步阶段。在本研究中,我们使用原子力显微镜 (AFM)、拉曼和 PL 光谱在一系列温度和波长范围内研究了 SiO 2 /Si 衬底上剥离的 VP 的光降解、热效应和激子发射。我们的研究结果表明,VP 的降解速度受光的波长和曝光时间的强烈影响。发现在 VP 的带隙之上的光激发会由于与活性氧 (ROS) 的相互作用而导致更快的降解。PL 光谱显示激子数量逐渐下降,表明激子的寿命缩短以及激子的形成和稳定性发生变化,从而影响 VP 的量子效率。功率依赖性 μ -PL 测量表明中性激子和三子的强度线性增加,而它们的峰值能量之间的能量差随着功率的增加而减小,这表明激子能隙发生了变化。温度依赖性 PL 显示出可见的 X 0 和 T 峰,在高温下 X 0 发射的光谱权重更高,这意味着 VP 晶体中 T 发射的热稳定性降低。采用温度依赖性拉曼光谱法,在不同温度下确定了九种拉曼模式的峰位,最高可达