但是,当将AU的其他层插入结构中时,会出现平面外AU-AU相互作用。超出了三层AU配置,对于中间的AU层,平面外AU-AU相互作用发生而无需直接键入Ti。这对粘结产生了积极影响,如图2C,其中综合部分晶体轨道汉密尔顿人口(IPCOHP)随着其他AU层而增加。分析图2D表明,Ti-AU相互作用也受益于多个AU层的存在。图2D进一步证明,Ti 4 Au 3 C 3中的三层AU提供了最大的个人贡献。这是通过图中所示的键长2e,其中Ti-au和au-au键(与Ti层相邻)对于Ti 4 Au 3 C 3最短,表明
X.du 1,Y。D. Li 1,Y。T. Cao 2,3,C。Y. Pei 4,M。X. Zhang 4,W。X. Zhao 1,K。Y. Y. Zhai 1,R。Z. Xu 1,Z.
传热系数(HTC,H)和临界热通量(CHF,Q'CHF)是量化沸腾性能的两个主要参数。HTC描述了沸腾传热的有效性,该沸腾的传热效率定义为热通量(Q'')与壁超热(δTW)的比率,即H = Q' /δTW。此处δTw是沸腾表面和饱和液体之间的温度差。在成核沸腾状态下,热通量随壁过热而增加。但是,当热通量足够高时,沸腾表面上的蒸气气泡过多的核核会阻止液体重新润湿表面,然后在表面上形成绝缘的蒸气膜。这种蒸气膜变成了一个热屏障,可导致墙壁超热和沸腾系统的倦怠大幅增加。从成核沸腾到膜沸腾的这种过渡称为沸腾危机,其中最大热通量为CHF。增强CHF可以实现更大的安全边缘或扩展沸腾系统的操作热通量范围。[5]
物联网 (IoT) 是一个不断发展的技术领域,已被确定为增强行业运营和性能的关键工具。随着物联网在全球范围内的部署,威胁也在不断增加;因此,安全性,尤其是身份验证和完整性,是一个关键的考虑因素。未来的一个重大威胁是量子攻击,只有使用后量子 (PQ) 密码系统才能击败它。美国国家标准与技术研究所 (NIST) 已选定用于 PQ 安全性的新型数字签名 (DS) 标准。然而,物联网有其自身的技术挑战,因为分配给传感器和其他类似设备的资源有限。因此,这些 PQ 方案在物联网中的使用和适用性仍然是一个开放的研究领域。在本文中,我们确定了一个由三个不同层构建的物联网架构,分别由服务器、网关和物联网设备表示。我们首先测试 PQ DS 方案标准并将其与当前标准进行比较,以评估它们在此架构中提供身份验证和完整性的实用性。然后,根据相应设备(服务器、网关、物联网设备)的特点和安全属性(认证、完整性)在每一层选择最合适的PQ方案。最后对所选择方案进行实验,并给出使物联网通信和交互PQ安全的架构模型。
摘要:航空运输是一个庞大而复杂的系统,具有涌现性和自组织性,对其进行建模具有重要意义。为了更准确地对航空运输系统从物理设施到交通应用进行建模,本文构建了三层网络,包括航线网络、城市对航线网络和航班运营网络,其中航线网络为物理层,城市对航线网络和航班运营网络为应用层。此外,利用复杂网络理论这一有力工具讨论了三层网络的拓扑特性。此外,考虑到城市对航线路径的多样性,提出了一种基于模拟退火的框架来优化航线网络上每条城市对航线的路由路径,以缓解航线网络的交通拥堵,其中采用了一种精细的扰动解方法,即移除后选择(SAR)。实验结果表明,与默认路由路径、最短路由路径、随机路由路径相比,提出的路由优化策略可以分别使航线网络最大交通流量减少2.4%、4.6%、4.8%,表明提出的优化方法对缓解航线网络交通拥堵具有良好的效果。
我们研究以相等的连续扭角排列在楼梯堆叠配置中排列的三层石墨烯。在Moiré晶体模式的顶部,出现了我们绝热处理的超莫雷长波长调制。对于每个山谷,我们发现两个中央频带是拓扑,Chern数字C =±1在Supermoiré尺度上形成Chern Mosaic。Chern域围绕高对称性堆叠点ABA或BAB,并通过连接频谱完全连接的AAA点的无间隙线将它们分开。在手性极限中,以θ〜1的魔法角度为单位。69◦,我们证明了中央频带在ABA和BAB处的理想量子曲率完全弯曲。此外,我们将它们分析为具有±2的固有颜色键入状态的叠加,而Chern Number normume∓1。为了与实验性配置联系起来,我们还以有限的波纹探索了非手续极限,并发现拓扑结实的Chern Mosaic模式确实很健壮,并且中央频带仍然与偏远频段分开。
抽象基于支架的组织工程提供了一种有效的方法来修复子宫组织缺陷和恢复生育能力。在当前的研究中,通过4D打印,静电纺丝和3D生物打印的子宫再生设计和制造了与子宫组织相似的新型三层组织工程支架。高度可拉伸的聚(l-甲状腺素 - 三甲基碳酸盐)(plla-co -TMC,“ PTMC”简称)/热塑性聚氨酯(TPU)聚合物混合架架首先是通过4D打印制成的。为了改善生物相容性,在PTMC/TPU骨架上通过电启用产生了与聚多巴胺(PDA)颗粒掺入的多孔聚(PLGA)/明胶甲基丙烯酰基(GELMA)纤维。重要的是,将雌二醇(E2)封装在PDA颗粒中。因此产生的双层支架可以提供E2的受控和持续释放。随后,将基于3D生物启动的Bilayer Bioprine intrialsine rementers-uilare trirale trialer trialer trialeder trialder trialder infiral infiral inforials 与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。 这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。
C. 参数和变量 A 水库能量水平。cop P2H 性能系数。EL 电力需求。G 天然气能量。GC 设施的天然气消耗量。GL 天然气需求。GP 设施的天然气产量。H 热能。HL 热需求。HP 设施的热量产量。IE 电力需求变化的激励率。IH 热需求变化的激励率。M 足够大的数字。P 输出功率。RU,RD 上升/下降速率限制。sug,sdg 启动和关闭成本。SU,SD 启动和关闭燃料消耗。VOC 压缩机的运行和维护成本。VOE 膨胀机的运行和维护成本。I 表示设施状态的二元变量。Γ 不确定性预算。π 每种情景的概率。λ 批发能源市场价格。ζ MER 和 MEC 之间的合同价格。α DRP 中的需求参与率。η 充电/放电效率。 γ , β , m 稳健模型的对偶变量。τ 损失,τ 增益 热能损失系数。∆ E 执行 DRP 后电力需求发生变化。∆ H 执行 DRP 后热需求发生变化。
Andrew T. Pierce 1 * ‡ # 、Yonglong Xie 1,2,3 * ‡ 、Jeong Min Park 2 *、Zhuozhen Cai 1 、Kenji Watanabe 4 、Takashi Taniguchi 5 、Pablo Jarillo-Herrero 2‡ 、Amir Yacoby 1‡ 1 哈佛大学物理系,美国马萨诸塞州剑桥 02138 2 麻省理工学院物理系,美国马萨诸塞州剑桥 02139 3 莱斯大学物理与天文系,德克萨斯州休斯顿 77005 4 日本国家材料科学研究所电子和光学材料研究中心,日本筑波 305-0044 并木 1-1 5 日本国家材料科学研究所材料纳米结构研究中心,日本筑波 305-0044 并木 1-1 ‡ 通讯作者邮箱:atp66@cornell.edu、yx71@rice.edu、pjarillo@mit.edu、yacoby@g.harvard.edu
COBECC 包含两套独立的条款——一套针对商业建筑,一套针对住宅建筑。每套条款分别适用于其范围内的建筑。商业条款适用于除三层或三层以下的住宅建筑外的所有建筑。住宅条款适用于独立的一户和两户住宅、多户住宅以及三层或三层以下的 R-3 和 R-4 组建筑。这些范围分别基于每套条款第 2 章中“商业建筑”和“住宅建筑”的定义。请注意,商业条款因此包含四层或四层以上的住宅建筑的条款。每套条款分为五个不同的部分: