2.3.3 通过二氯甲烷氢氟化生产 HFC-32 的过程中 HFC-23 的电子氟化 ...................................................................................................................................... 44 2.3.4 烷烃的电子氟化和 HFC-23 的副产品 ............................................................................................................................. 45 2.3.5 在生产受控物质过程中产生 HFC-23 副产品的其他可能途径 ............................................................................................. 46 2.3.6 HFC-125 工厂的 CFC-113、CFC-114、CFC-115 副产品 ............................................................................................. 46 2.4 生产附件 A 至 F 所列物质的中间体 ............................................................................................................. 48 2.5生产排放及其减缓措施 ................................................................................................................ 50 2.5.1 产品、联产品、中间体和原料的排放 ................................................................................ 50 2.5.2 不需要的副产品的排放 ................................................................................................ 51 2.5.3 排放监测 ................................................................................................................ 51 2.5.4 排放报告 ................................................................................................................ 52 2.5.5 生产、分销和用作受控物质原料的排放因子 ............................................................. 52 2.5.6 生产、分销和原料使用过程中受控物质的估算排放量 ............................................................. 57 2.6 受控物质的库存 ................................................................................................................ 58 2.7 与化学工业部门相关的一些问题 .............................................................................................. 58 2.7.1 非法贸易 ...................................................................................................................... 58 2.7.2 专利 ............................................................................................................................. 59 2.7.3 向低全球升温潜能值 HCFO 和 HFO 过渡过程中的生产和化学品供应问题 ............................................................................................................. 60 2.7.4 PFAS 和 TFA 前体物质 ............................................................................................................. 60 2.8 四氯化碳 ............................................................................................................................. 63 2.8.1 摘要 ............................................................................................................................. 63 2.8.2 引言........................................................................................... 64 2.8.3 CTC 生产路线 .............................................................................................. 64 2.8.4 CTC 生产和排放 ........................................................................................................ 66 2.8.5 四氯化碳的运输 .......................................................................................................... 70 2.8.6 四氯化碳作为原料的前景 .......................................................................................... 71 2.8.7 四氯化碳的其他来源:乙烯基链 ...................................................................................... 71 2.9 CFC-11 生产的最新情况 ............................................................................................. 72 2.10 极短寿命物质 ............................................................................................................. 73 2.10.1 摘要 ...................................................................................................................... 74 2.10.2 极短寿命物质(VSLS)的背景 ............................................................................. 75 2.10.3 二氯甲烷(DCM)和氯仿(CFM)的生产和使用 ................ ... 2.10.4 二氯甲烷 ...................................................................................................... 78 2.10.5 氯仿 .............................................................................................................. 82 2.10.6 关于二氯甲烷和氯仿的结论 ............................................................................ 83 2.10.7 二氯乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S..................................................................................... 93.................................................................................................. 78 2.10.5 氯仿 ................................................................................................................ 82 2.10.6 关于二氯甲烷和氯仿的结论 ................................................................................ 83 2.10.7 二氯化乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S ................................................................................ 93.................................................................................................. 78 2.10.5 氯仿 ................................................................................................................ 82 2.10.6 关于二氯甲烷和氯仿的结论 ................................................................................ 83 2.10.7 二氯化乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S ................................................................................ 93
我们使用“Gala Lumber Company”这个虚构案例来完成下面的社区参与规划工具示例,其中包括来自 ATSDR 的虚构回应。在该案例中,一家公司于 1974 年开始运营,是一家使用铬化砷酸铜 (CCA) 的木材处理厂。随着时间的推移,该地点的运营逐渐发展为包括一家使用三氯乙烯 (TCE) 的金属脱脂剂公司和一家拥有多氯联苯 (PCB) 许可废物处理区的电气公司。随着时间的推移,该地点周围的土地用途也发生了变化,包括在该地点北部围栏线上使用私人饮用水井的住宅、西部和南部围栏线上的住宅、该地点西南角的儿童保育中心以及该地点东北边缘的社区公园。有关虚构案例研究的更多详细信息,请参阅 https://www.atsdr.cdc.gov/training/pha-training-section1.html 上的公共卫生评估培训模块。
1979 年,位于恩迪科特村的 IBM 制造厂向环境保护署报告了一起化学品泄漏事件,泄漏的化学品包括约 4,100 加仑挥发性有机化学品 (voc),包括三氯乙烯 (TCE)。IBM 在环境保护署的监督下,于 1982 年安装了 3 口抽水井,并开始从受污染的场地抽水和过滤水。泄漏事件发生后,恩迪科特村从 IBM 获得了一辆消防车,此后该村似乎对泄漏事件不再感兴趣。IBM 此后报告称,他们总共抽取了超过 80,000 加仑的挥发性有机化学品,因此显然污染程度远高于一次泄漏。出于环境保护署从未充分解释的某种原因,1986 年,该场地在该州的危险废物登记册上从 2 级(对公众构成威胁)降级为 4 级(结案)。直到 2004 年 1 月,在国会议员莫里斯·欣奇 (Maurice Hinchey) 的协助和公民团体的压力下,它才被正确地重新归类为 2 级。
目的 睾丸生殖细胞肿瘤 (TGCT) 的病因在很大程度上仍不清楚,但有研究表明职业性溶剂暴露与该病有关。先前分析这些暴露的研究报告了不一致的结果,可能与暴露评估方法有关。本研究旨在调查职业性溶剂暴露对年轻男性患 TGCT 风险的影响。方法 本研究根据法国国家 TESTIS 病例对照研究中 454 名病例和 670 名年龄在 18-45 岁之间的对照者的一生工作经历,研究了职业性溶剂暴露和 TGCT 风险。使用以下方法估算溶剂暴露:(i) 按工作暴露矩阵 (JEM) 分配暴露和 (ii) JEM 结合特定问卷 (SQ) 和专家评估 (EA) 中的自我报告暴露数据。使用条件逻辑回归模型估算优势比 (OR) 和 95% 置信区间 (CI)。结果两种方法(JEM 和 JEM+SQ+EA)均显示 TGCT 与三氯乙烯暴露之间存在一致的关联(暴露与未暴露;JEM=OR 1.80 [95% 置信区间 (CI) 1.12–2.90] 和 JEM+SQ+EA= OR 2.59(95% CI 1.42–4.72)。两种方法还观察到与酮酯和燃料及石油基溶剂的正相关。结论结果表明,某些有机溶剂可能与职业暴露男性的 TGCT 发病机制有关。JEM+SQ+EA 的联合使用似乎可以通过考虑个体暴露差异来限制错误分类,因此,是一种在流行病学研究中评估职业暴露的有效方法。
抽象的特发性帕金森氏病(PD)在流行病学上与接触毒物(例如农药和溶剂)相关,其中包括各种污染我们环境的化学物质。大多数在结构上是不同的,但其毒性的常见细胞靶标是线粒体功能障碍,这是多巴胺能神经元选择性脆弱性涉及的关键病理触发因素。我们和其他人表明,环境线粒体毒物(例如农药烤面包酮和paraquat)以及有机溶剂溶剂三氯乙烯(TCE)似乎受到蛋白质LRK2的影响,蛋白质LRK2是PD的遗传危险因素。作为LRRK2介导囊泡运输并影响内溶性功能,我们假设LRRK2激酶活性可能会抑制毒性受损的线粒体的自噬去除,从而导致氧化应激升高。相反,我们怀疑对LRRK2的抑制作用,该抑制已被证明是针对由线粒体毒物引起的多巴胺能神经变性的,它将减少活性氧(ROS)的细胞内产生,并防止导致细胞死亡的线粒体毒性。为此,我们在体外测试了如果遗传或药物抑制LRRK2(MLI2),则可以抵抗与PD风险相关的四种毒物引起的ROS - Rotenone,paraquat,paraquat,tce和四氯乙烯(PERC)。同时,我们评估了MLI2抑制LRRK2是否可以预防体内TCE诱导的毒性,在我们观察到的TCE升高LRRK2激酶在多巴胺神经化学剂之前的Nigrostriatal段中的LRRK2激酶活性。我们发现LRRK2抑制作用阻止了毒物诱导的ROS并在体外促进线粒体,并保护了多巴胺能神经退行性变性,神经炎症和由TCE在体内引起的线粒体损害。我们还发现,具有LRRK2 G2019S突变的细胞显示出加重的毒物诱导ROS的水平,但通过MLI2抑制LRRK2,这可以改善。总的来说,这些数据支持LRRK2在毒物诱导的线粒体功能障碍中的作用,该功能通过氧化应激和自噬去除受损的线粒体而与PD风险相关。关键字:帕金森氏病(PD),基因X环境(GXE),环境有毒物质,亮氨酸富集重复激酶2(LRRK2),线粒体
加工Vinnol®H15/45 m(可再生能量)通常以溶解形式使用。酮和酯是Vinnol®H15/45 m(可再生能量)最常用的溶剂,酮比酯更有效。是真正的溶剂,而三氯乙烯和四氯乙烯仅具有溶胀效应。醇和脂肪液碳氢化合物不会溶解Vinnol®H15/45 m(可再生能量)。芳香烃可以与真实溶剂合并到有限的程度上。vinnol®H15/45 m(可再生能量)可以用单体和聚合物增塑剂(例如邻苯二甲酸盐,脂肪酸盐,sebacates,柠檬酸盐,柠檬酸盐,磷酸盐,环氧化物和氯氧化物氧化物)塑化。vinnol®H15/45 m(可再生能源)与所有其他Vinnol®表面涂层树脂完全兼容。它也与许多丙烯酸聚合物和酮树脂以及一些环氧化物结合在一起。醇酸树脂,硝酸纤维素,聚乙烯基乙酸酯和聚乙烯基丁烷通常与Vinnol®H15/45 m(可再生能量)不相容。我们建议始终检查Vinnol®H15/45 m(可再生能量)与相关聚合物的兼容性。必须在初步测试中检查Vinnol®H15/45 m(可再生能量)与颜料或着色剂的兼容性。某些颜料/着色剂可能会产生触变作用和/或损害粘附。使用含有锌或镉的颜料时必须注意,因为它们会在温度升高时催化VC共聚物的分解。也适用于铁氧化物色素。尽管固有的稳定性良好,但某些应用必须根据Vinnol®H15/45 m(可再生能量)稳定涂层,以针对热和/或紫外线进行稳定。环氧化合物通常足以稳定这些涂层,以防止低热撞击。涉及较高温度的地方,建议使用钙/锌或有机素稳定剂。户外应用需要额外使用紫外线稳定器以及针对这些条件优化的热稳定器。为了避免出现变色的风险,应在制备溶液和随后的产品存储期间避免与铁接触。vinnol®基于表面涂料化合物应存储在涂层容器中。
2-1 入口 OV 浓度低于 100 ppm 的气体催化氧化控制现场研究总结 15 2-2 使用 ARI 系统测试的进料流成分(单位:ppm) 18 2-3 使用 ARI 系统对不同混合物的破坏效率 18 2-4 入口浓度和温度对 ARI 系统破坏效率的影响 20 2-5 在沃特史密斯空军基地使用 ARI 的流化床催化焚烧炉对三氯乙烯进行的催化破坏效率 20 2-6 沃特史密斯空军基地对 ARI 系统的催化氧化测试结果总结 21 2-7 在麦克莱伦空军基地使用 ARI 的流化床催化焚烧炉进行的流化床催化 OV 焚烧研究结果 22 2-8催化氧化成本 28 2-9 控制入口 OV 浓度低于 100 ppm 的气体的蓄热式热氧化现场研究总结 30 2-10 路易斯安那太平洋公司位于阿拉巴马州汉斯维尔的 OSB 工厂的 Smith RTO 源测试结果 33 2-11 路易斯安那太平洋公司位于路易斯安那州乌拉尼亚的 OSB 工厂的 Smith RTO 源测试结果 33 2-12 数字设备公司 Smith RTO 系统测试结果,库比蒂诺 34 2-13 美孚化学公司 Smith RTO 系统测试结果,贝克斯菲尔德 35 2-14 新泽西州和加利福尼亚州的 Reeco 蓄热式热焚烧炉测试结果 38 2-15 Reeco 蓄热式热焚烧的成本效益 42 3-1 含氧气体浓度低于 100 ppm 的不可再生碳吸附现场研究总结ppm 入口 OV 浓度 48 3-2 维罗纳井场入口气体浓度 49 3-3 改进的吸附系统 54 3-4 MET-PRO KPR 系统现场数据 57 3-5 CADRE 吸附/焚烧系统现场研究总结,用于含有少于 100 ppm 入口 OV 浓度的气体 60 3-6 使用蒙特疏水性沸石的 OV 减排系统 65 3-7 HONEYDACS™ 系统的有机溶剂组成与效率 74 3-8 Dürr Industries 系统测试结果 76 3-9 Dürr 系统的比较运营成本 79 3-10 Dürr Industries 比较成本 80 3-11 Eisenmann 吸附系统现场安装 85 3-12 EcoBAC™ 系统现场数据90 3-13 按行业类型和处理材料划分的 EC&C 系统应用情况 91
2-1 入口 OV 浓度低于 100 ppm 的气体催化氧化控制现场研究总结 15 2-2 使用 ARI 系统测试的进料流成分(单位:ppm) 18 2-3 使用 ARI 系统对不同混合物的破坏效率 18 2-4 入口浓度和温度对 ARI 系统破坏效率的影响 20 2-5 在沃特史密斯空军基地使用 ARI 的流化床催化焚烧炉对三氯乙烯进行的催化破坏效率 20 2-6 沃特史密斯空军基地对 ARI 系统的催化氧化测试结果总结 21 2-7 在麦克莱伦空军基地使用 ARI 的流化床催化焚烧炉进行的流化床催化 OV 焚烧研究结果 22 2-8催化氧化成本 28 2-9 控制入口 OV 浓度低于 100 ppm 的气体的蓄热式热氧化现场研究总结 30 2-10 路易斯安那太平洋公司位于阿拉巴马州汉斯维尔的 OSB 工厂的 Smith RTO 源测试结果 33 2-11 路易斯安那太平洋公司位于路易斯安那州乌拉尼亚的 OSB 工厂的 Smith RTO 源测试结果 33 2-12 数字设备公司 Smith RTO 系统测试结果,库比蒂诺 34 2-13 美孚化学公司 Smith RTO 系统测试结果,贝克斯菲尔德 35 2-14 新泽西州和加利福尼亚州的 Reeco 蓄热式热焚烧炉测试结果 38 2-15 Reeco 蓄热式热焚烧的成本效益 42 3-1 含氧气体浓度低于 100 ppm 的不可再生碳吸附现场研究总结ppm 入口 OV 浓度 48 3-2 维罗纳井场入口气体浓度 49 3-3 改进的吸附系统 54 3-4 MET-PRO KPR 系统现场数据 57 3-5 CADRE 吸附/焚烧系统现场研究总结,用于含有少于 100 ppm 入口 OV 浓度的气体 60 3-6 使用蒙特疏水性沸石的 OV 减排系统 65 3-7 HONEYDACS™ 系统的有机溶剂组成与效率 74 3-8 Dürr Industries 系统测试结果 76 3-9 Dürr 系统的比较运营成本 79 3-10 Dürr Industries 比较成本 80 3-11 Eisenmann 吸附系统现场安装 85 3-12 EcoBAC™ 系统现场数据90 3-13 按行业类型和处理材料划分的 EC&C 系统应用情况 91