摘要:肥胖症,一种以脂肪组织过度积累为标志的慢性疾病,不仅会影响个体的幸福感,而且会显着膨胀医疗保健成本。脂肪的生理过量表现为脂肪组织中的甘油三酸酯(TG)沉积,白色脂肪组织(WAT)通过脂肪细胞增生是一种关键的脂肪生成机制。随着解决这一全球健康危机的努力,了解促成因素的复杂相互作用对于有效的公共卫生干预和改善患者预后至关重要。在这种情况下,肠道菌群衍生的代谢产物在编排肥胖调节中起着重要作用。微生物脂多糖(LPS),继发性胆汁酸(BA),短链脂肪酸(SCFAS)和三甲胺(TMA)是发作性疾病状态下的主要肠内代谢物。新兴证据强调了微生物群在影响宿主代谢和随后的健康结果中的重要作用,为治疗策略提供了新的途径,包括基于多酚的微生物种群的操纵。在各种药物中,咖啡因作为代谢途径的有效调节剂出现,表现出抗炎,抗氧化剂和肥胖性降低特性。值得注意的是,咖啡因的抗辅助潜力归因于关键脂肪形成调节剂的下调。最近的发现进一步表明,咖啡因对肥胖的影响可能是通过肠道菌群的改变及其代谢副产品来介导的。因此,本评论总结了咖啡因在通过肠道菌群及其代谢物调节肥胖症中的抗辅助作用。
摘要:简介:饮食在塑造肠道微生物群中的重要性已经建立得很好,可能有助于改善个人的整体健康状况。许多其他因素,例如遗传学,年龄,运动,抗生素疗法或烟草使用,在影响肠道菌群中也起作用。目的:这项叙述性评论总结了三种不同的饮食类型(植物性,地中海和西方)如何影响肠道微生物群的组成以及非传染性疾病(NCDS)的发展。方法:使用PubMed,Web of Science和Scopus数据库进行了全面的文献搜索,重点介绍了关键词“饮食模式”,“肠道微生物群”和“营养不良”。结果:植物性和地中海饮食均已证明可以促进有益细菌代谢产物的产生,例如短链脂肪酸(SCFAS),而同时降低了三甲胺-N-氧化物(TMAO)的浓度,这是一种与负健康相关的分子。此外,它们对微生物多样性有积极影响,因此通常被认为是健康的饮食类型。另一方面,西方饮食是一种不健康的营养方法的典型例子,导致致病细菌的过度生长,在这种情况下,TMAO水平上升和由于肠道营养不良而导致的SCFA产生下降。结论:当前的科学文献始终强调了基于植物性和地中海饮食类型的优越性,而不是西方饮食在促进肠道健康和预防NCD方面的优势。了解饮食对肠道菌群调节的影响可能为新型治疗策略铺平道路。
高静水压力(HHP)调节的基因表达是微生物适应深海环境的最常见策略之一。以前我们表明,HHP诱导的三甲胺N-氧化物(TMAO)还原酶提高了深海菌株弧菌Fluvialis Qy27的压力耐受性。在这里,我们研究了HHP响应性调节TMAO还原酶Tora的分子机制。通过构建Torr和Tors缺失突变体,我们证明了两个组件调节剂Torr和传感器TOR是托拉的HHP响应性调节的原因。与已知的HHP响应性调节系统不同,HHP的丰度不受HHP的影响。在保守的磷酸化位点改变的δTOR突变体的互补表明,这三个位点对于底物诱导的调节是必不可少的,但仅位于替代递质结构域中的组氨酸与压力响应性调节有关。 总的来说,我们证明了HHP诱导TMAO还原酶是通过Torrs系统介导的,并提出了通过底物诱导的压力响应调节中信号转导的分叉。 这项工作提供了对压力调节基因表达的新知识,并将促进对微生物对深海HHP环境的适应性的理解。互补表明,这三个位点对于底物诱导的调节是必不可少的,但仅位于替代递质结构域中的组氨酸与压力响应性调节有关。总的来说,我们证明了HHP诱导TMAO还原酶是通过Torrs系统介导的,并提出了通过底物诱导的压力响应调节中信号转导的分叉。这项工作提供了对压力调节基因表达的新知识,并将促进对微生物对深海HHP环境的适应性的理解。
背景:三甲基尿症(TMAU)是一种罕见的隐性遗传疾病,全球患病率有限。迄今为止,还没有关于沙特阿拉伯记录的TMAU案件的正式报道。目的:在这项研究中,我们开发了一种液相色谱 - 质谱法(LC-MS)方法,用于分析三甲基矿山(TMA)和三甲胺N-氧化胺(TMAO)的尿液和血浆样品中的第一个报道的TMAU阿拉伯TMAU病例。患者和方法:一名41岁的沙特男子在国民警卫队医院被诊断出患有TMAU。血液和尿液样品,以确认TMAU的诊断。在这项研究中,我们研究了LC-MS,细胞培养,流式细胞仪,粘附测定和Sanger测序分析。此外,在这项研究中,我们选择了5个健康对照。结果:结果表明,在尿液和血浆样品中均存在TMA水平升高,而与对照组相比,TMAO水平显着降低。此外,我们利用TMAU患者的血浆样品作为新型模型,研究低TMAO对单核细胞和内皮细胞功能的潜在影响。DNA测序分析确定了C.622G> t(P.Glu208*),该分析在FMO3基因中创建了过早的停止密码子。结论:与非TMAU患者的血浆相比,我们的发现显示了TMAU患者血浆刺激的单核细胞和内皮细胞的差异反应。这些不同的反应可能是内皮功能的关键调节剂,并导致血管损伤。关键字:三甲基尿症,TMAU,LC-MS,细胞培养,流式细胞仪,粘附测定和Sanger测序分析
缩写:Alt,丙氨酸氨基转移酶;猿,苹果多酚提取物; apoe /,载脂蛋白E; AST,天冬氨酸氨基转移酶; BMI,体重指数; BW,体重; CD,克罗恩病; CRC,结直肠癌; CRP,C反应蛋白; CTR,控制; DGGE,变性梯度凝胶电泳; DP,聚合程度; DSS,硫酸葡萄糖钠; EGCG,epigallocatechin Gallate; EGCG3-ME,Epigallocatechin 3- O-(3- O-甲基)透足; f,分数; f/b,企业/杀菌剂; GMCSF,粒细胞巨噬细胞群刺激因子; GRO,生长调节的癌基因; GSPE,葡萄种子原腺苷提取物; GTE,绿茶提取物; HBA1C,血红蛋白A1C; HFD,高脂饮食; HFHSD,高脂高蔗糖折叠; HTS,高通量测序; IBD,炎症性肠病;国际益生菌和益生元科学协会Isapp; LDLR /,LDL受体缺陷; LFD,低脂饮食; LPS,脂多糖; MCD,蛋氨酸 - 胆碱缺乏;大都会,代谢综合征; NAFLD,非酒精性脂肪肝病;纳什,非酒精性脂肪性肝炎; PACS,低聚蛋白酶蛋白; PCR-DGGE,聚合酶链反应构成梯度凝胶电泳; PFE,pyracantha fortuneana果实提取物; PPEP,果皮桃萃取的多酚; SASP,磺胺丙嗪; SCFA,短链脂肪酸; TLR4,像受体4一样收费; TMAO,三甲胺-N-氧化物; TNB,2,4,6-三硝基苯磺酸; TPC,总多酚的含量; UC,溃疡性结肠炎; w/v,重量/体积。
摘要肠道轴在呼吸道感染期间至关重要,包括流感病毒(IAV)感染。在本研究中,我们使用了高分辨率的shot弹枪元基因组学和靶向代谢组学分析来表征小鼠肠道肠道微生物群的组成和元倾斜度中与流感相关的变化。我们观察到7天(d)7天的分类级变化,包括明显减少乳酸杆菌科和双歧杆菌科的成员,以及akkermansia muciniphila的丰度增加。在D14上,某些物种持续存在扰动。宏基因组数据的功能尺度分析揭示了几种代谢途径的短暂变化,尤其是导致短链脂肪酸(SCFA),多胺和色氨酸代谢物的瞬时变化。对血清的定量靶向代谢组学分析揭示了特定类别的肠道微生物群代谢产物的变化,包括SCFAS,三甲胺,多胺和含吲哚的色氨酸代谢物。在D7上观察到吲哚-3-丙酸(IPA)血液水平的明显降低。微生物群相关的代谢产物的变化与分类单元丰度和疾病标志物水平的变化相关。特别是,IPA与一些乳酸杆菌科和双歧杆菌科(limosilactobacillus reuteri,Animalis limosilactobacillus)正相关,并与细菌M7,病毒载量和炎症标志物呈负相关。在患病动物中补充IPA可减少病毒载量,并降低局部(肺)和全身炎症。用靶向IPA产生细菌的抗生素治疗感染前的抗生素,从而增强了病毒载量和肺部炎症,这是补充IPA抑制的作用。这种综合的宏基因组 - 代谢组分分析的结果强调了IPA是导致流感结果的重要因素和潜在的疾病严重性生物标志物。
Seldin等。13证明,在内皮和平滑肌细胞中用TMAO治疗增加了炎症标记,并促进了NF-κBmRNA表达的增加。Chen等。 35表明肥胖小鼠表现出高的TMAO水平和炎性细胞因子,例如TNF和IL-1β。 一项研究表明,TMAO浓度与低度炎症之间存在正相关,在该患者中,TMAO血浆水平高的成年患者的TNF-α浆液水平较高。 36此外,在显然健康的个体中,高TMAO血浆水平与CAD的发展有关。 38在心绞痛患者中,TMAO水平与包括IL-1β和CRP在内的炎症标记有关。 37个高水平的炎性生物标志物CRP与动脉粥样硬化并发症和CVD风险息息相关。 此外,在内皮祖细胞中进行的一项体外研究表明,TMAO诱导炎症和氧化应激升高。 37,39Chen等。35表明肥胖小鼠表现出高的TMAO水平和炎性细胞因子,例如TNF和IL-1β。一项研究表明,TMAO浓度与低度炎症之间存在正相关,在该患者中,TMAO血浆水平高的成年患者的TNF-α浆液水平较高。36此外,在显然健康的个体中,高TMAO血浆水平与CAD的发展有关。38在心绞痛患者中,TMAO水平与包括IL-1β和CRP在内的炎症标记有关。37个高水平的炎性生物标志物CRP与动脉粥样硬化并发症和CVD风险息息相关。此外,在内皮祖细胞中进行的一项体外研究表明,TMAO诱导炎症和氧化应激升高。37,39
缩写:b -trcp,β-transducin重复蛋白; CBL-B,Casitas B淋巴瘤B; C-CBL,Casitas B谱系淋巴瘤; COP1,组成性的光型1; CSN5,组成型光形态发生9信号体5; DCUN1D1,有缺陷的Cullin Neddylation 1含域1;配音,去泛素化酶; FBXO38,仅F-box蛋白38; FBXW7,F-box,具有7个串联WD40重复; HRD1,HMG-COA还原酶降解蛋白1; KLHL22,Kelch喜欢家庭成员22; OTUB1,含有OTU结构域的泛素醛蛋白1; PD-1,编程死亡-1; PD-L1,编程死亡-1配体; PTM,翻译后修改; RBX1,环盒蛋白1;汤匙,斑点型poz蛋白; Stub1,stip1同源性和含有蛋白质1的u-box E; UPS,泛素蛋白酶体系统; USP7,泛素特异性蛋白酶7; USP9X,泛素特异性肽酶9,X连接; USP22,泛素特异性蛋白酶22。*通讯作者。1 Xinsi Road,Xi'an,Shaanxi 710038,中国。**通讯作者。中国北京100853的海德安,豪德路28号。***通讯作者。1 Xinsi Road,Xi'an,Shaanxi 710038,中国。电子邮件地址:hanjing.cn@163.com(J。Han),huyi301zlxb@sina.com(y. hu),yanxiaolong@fmmu.edu.edu.cn(X。yan)。在重庆医科大学的责任下进行同伴审查。1这些作者为这项工作做出了同样的贡献。
胰腺β细胞通过作为胰岛素的主要来源来维持葡萄糖稳态方面起着关键作用。这些细胞负责胰岛素的合成,储存和释放,该胰岛素的合成,储存和释放是由于身体代谢状态的变化而受到严格调节。由于β细胞在糖尿病病理生理学中的核心作用,其生物学引起了科学界的显着兴趣。更好地了解β细胞生物学的多个方面可能会导致制定新的预防策略和治疗,从而延迟或停止疾病进展。这个特刊“胰腺β细胞”介绍了14篇文章的集合,其中包括五篇原始论文和9篇评论,突出了Beta细胞研究的各个方面。此问题的重点是控制β细胞质量膨胀和存活的分子机制,尤其强调了成熟β细胞功能的显着途径。贡献涵盖了广泛的主题,包括氧化应激对β细胞的影响[1-3],组织间通信[4-7],以及β细胞质量和功能的主调节剂[8-10]等。Mukai及其同事[1]回顾了氧化应激和β细胞抗氧化剂机制的作用,总结了β细胞中抗氧化酶的低表达和氧化应激如何损害胰岛素的分泌。作者建议核因子2与2相关因子2(NRF2)是β细胞抗氧化剂反应的主要调节剂。作者建议TMAO可能在糖尿病生成条件下介导一种补偿性的蛋白质作用。Wu及其同事[3]探索了在氧化应激条件下4-辛基伊替酸(4-OI)对胰腺β细胞的影响。研究人员发现,4-OI治疗减少了活性氧的产生,抑制细胞死亡途径激活和炎性细胞因子分泌,并逆转了缺氧诱导的细胞死亡,这表明4-OI可能在氧化应激条件下增强β细胞存活。此外,此问题还包括有关分子和其他组织中产生因素对β细胞功能的影响的文章。Krueger及其同事[4]研究了肠道微生物代谢产物三甲胺N-氧化物(TMAO)对功能性β细胞质量的影响。研究人员发现,尽管据报道患者的2型糖尿病(T2D)水平升高,但TMAO保护了β细胞功能并改善氧化和内质网应激。Fernandez-Millan及其同事[5]讨论了诸如T2D等代谢疾病病理学中的组织间交流的重要性,强调了如何理解Beta细胞与代谢和非代谢组织进行通信的方式提供了新的研究领域。他们强调了来自各种器官和组织对β细胞生物学的分泌因素的影响,这表明血时间交流可以为糖尿病研究提供新的机会。内分泌胰岛与胰腺中外分泌细胞的物理接近允许这些相邻细胞类型之间的旁分泌相互作用。作者强调了在这些情况下对糖尿病进行早期诊断的重要性。外分泌疾病对β细胞的影响是Ciochina and Floeagues的评论[6],它描述了慢性胰腺炎,急性胰腺炎,囊肿性肿瘤,胰腺癌,胰腺癌,胰腺癌,胰腺切除术以及Autoimmmune Pancreatiation and Autoimmune Pancreatiation如何影响Beta Celle和Diabect。Kryvalap及其同事[7]回顾了在外分泌胰腺中表达的蛋白酶和Serpin蛋白酶抑制剂对胰岛病理生理学的影响。作者探讨了对抑制或增强蛋白酶的反对意见
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。