摘要:这项工作报告了基于K-Carrageenan和Alginate钠的海洋衍生多糖配方的开发,以生产一种用于工程技术的新型脚手架。在3D打印之前,通过流变测试评估了双成分墨水的粘弹性。在没有任何交联的两个聚合物之间具有不同重量比的组成,第一次对我们的最大知识进行了3D打印,并且对制造参数进行了优化,以确保受控体系结构。在存在不同浓度的氯化物混合物(CaCl 2:KCl = 1:1; v / v)的情况下,进行了3D打印支架的交联。通过肿胀行为和机械性能评估了交联方案的效率。肿胀行为表明当交联剂的浓度增加时,肿胀程度下降。这些结果与纳米识别测量和宏观测试的结果一致。还使用形态分析来确定样品冻干后样品的孔径以及脚手架的均匀性和微体系特征。总体而言,注册的结果表明,双成分墨水ALG/KCG = 1:1可能对组织工程应用显示出潜力。
半导体技术不断向微米和亚微米尺度发展,从而提高了器件密度并降低了功耗。许多物理现象(如自热或电流泄漏)在这样的尺度下变得非常重要,而绘制电流密度图以揭示这些特征对于现代电子学的发展具有决定性作用。然而,先进的非侵入式技术要么灵敏度低,要么空间分辨率差,并且仅限于二维空间映射。在这里,我们使用金刚石中的近表面氮空位中心来探测预开发中的多层集成电路中电流产生的奥斯特场。我们展示了电流密度三维分量的重建,其幅度低至约 ≈ 10 μA/μm 2
精子是在睾丸中形成的,但必须通过附睾过渡才能获得运动能力和受精的能力。附睾是一个单一的小管,其中包括几个在解剖学和生理上不同的基础。伪分层的上皮由多种细胞类型组成,包括主要细胞,透明细胞,狭窄细胞和顶端细胞,这些细胞与附子症的腔内齐聚。基底细胞存在于上皮的底部,其中包括巨噬细胞/单核细胞,单核吞噬细胞和T淋巴细胞的光环细胞也存在。这个综合精子成熟过程的几个方面已经建立了很好的确定,但是很多知识仍然很少。鉴于附睾的功能障碍与男性不育症有关,需要研究附睾功能的体外工具和附睾精子成熟。我们的实验室和其他人以前已经开发了人,大鼠和小鼠上皮细胞系,这些细胞系已用于解决某些问题,例如关于附睾中的junc蛋白的调节,以及北苯酚的毒性。鉴于附睾上皮包含多种细胞类型,但是,3D体外模型提供了一种更全面和现实的工具,可用于研究和阐明附子功能的多个方面。©2024作者。Wiley Perigonicals LLC发布的当前协议。本文的目的是提供有关大鼠附子基础细胞的大鼠附子器官的制备,维持,传代和免疫荧光染色的详细信息,我们已证明这是大鼠附子症中的一种成年干细胞。
摘要脑干,丘脑和纹状体在精神分裂症谱系障碍(SSD)患者中的相对作用在很大程度上是未知的。To determine whether topographical alterations of the brainstem, thalamus and striatum contribute to parkinsonism in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥ 4 and < 4, respectively,与健康对照相比(n = 20)。FreeSurfer V6.0用于分割四个脑干区域(髓质长肌,Pons,上小脑梗和中脑),尾状核,put骨和丘脑。与没有帕金森主义的患者相比,帕金森氏症患者的髓质长大(p = 0.01,错误发现率(FDR)校正)和壳核(P = 0.02,FDR校正)的体积相比。在整个患者样本中(n = 99),(a)髓质长卷和SAS总数(p = 0.034)和glabella salivation(p = 0.007)的得分与(b)Thalamic量和SAS总数(p = 0.033)和glabella-salivation(P = 0.00)(P = 0.00)(P = 0.007)(P = 0.007)(P = 0.007)(P = 0.00)(P = 0.007), 确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。
基于纳米酶的创新抗癌疗法已获得显着性cance,灵感来自于自然防御中发现的酶,这些酶会催化癌细胞的破坏。1,2纳米酶是纳米材料,其本质上具有酶样活性,并且已在生物医学中广泛使用了多年。3 - 5近年来,人们对开发纳米酶的兴趣增加了催化可以帮助癌症检测和治疗的生物反应,以及其他应用。6,7纳米酶可以模仿过氧化物酶(POD)和氧化酶(OXD)的功能,并产生ROS,ROS对癌细胞有毒。8许多天然存在的酶含有主要由Fe,Cu,Mn或Zn离子组成的金属催化中心。例如,许多蛋白质和酶催化中心都是由铜制成的。9,10基于铜的纳米酶具有多种好处,例如较低的氧化还原
摘要 — 最近的芯片集成工艺使多个有源芯片能够在同一封装中进行 3D 堆叠,从而提供更高的逻辑密度、更低的功耗和显著的芯片间带宽。现场可编程门阵列 (FPGA) 可以从 3D 芯片集成中受益,方法是堆叠多个同质 FPGA 结构以增加逻辑容量,或与其他异构专用集成电路 (ASIC) 集成。这开启了无数的研究问题和相互关联的设计选择。然而,我们缺乏建模这些 3D 可重构设备并定量探索其巨大设计空间所需的工具。在这项工作中,我们增强了现有的 FPGA 架构探索工具并构建了新的工具来解决这一差距,重点关注电路级结构建模、3D 集成考虑、系统级架构和计算机辅助设计 (CAD) 工具。我们通过集成升级版的 COFFE 自动晶体管尺寸调整工具来扩展 RAD-Gen 框架,该工具支持 7 nm FinFET,并为较新的工艺技术提供更精确的金属感知面积模型。我们还在 RAD-Gen 中实现了新工具,用于对 3D 架构的芯片间连接和电源分配网络进行建模。此外,我们还推出了新版多功能布局布线 (VPR) 工具,该工具可以对 3D 设备进行建模,并对其架构描述语言和布局布线引擎进行了增强。最后,我们通过对同构和异构 3D 可重构设备进行建模和评估,展示了我们增强工具的功能。
低场 (LF) MRI 扫描仪 (<1T) 在资源有限或电源不可靠的环境中仍然很普遍。然而,它们产生的图像的空间分辨率和对比度通常低于高场 (HF) 扫描仪。这种质量差异可能导致临床医生的解释不准确。图像质量迁移 (IQT) 旨在通过学习低质量和高质量图像之间的映射函数来提高图像质量。现有的 IQT 模型通常无法恢复高频特征,导致输出模糊。在本文中,我们提出了一种 3D 条件扩散模型来改进 3D 体积数据,特别是 LF MR 图像。此外,我们将跨批次机制整合到我们网络的自注意力和填充中,即使在小型 3D 块下也能确保更广泛的情境感知。在公开的人类连接组计划 (HCP) 数据集上进行的 IQT 和脑分区实验表明,我们的模型在数量和质量上都优于现有方法。该代码可在 https://github.com/edshkim98/DiffusionIQT 上公开获取。
而且获取过程也很耗时。此外,这种方法需要购买 3D 数字化仪,这也相对昂贵(成本约 3000 英镑)。相比之下,摄影测量方法是一种低成本的空间配准解决方案,因为它们可以通过一部智能手机轻松实现。8 摄影测量从不同角度对佩戴 fNIRS 设备的受试者拍摄多张照片。使用专业软件(例如 Metashape 10 )将获取的 2D 照片转换为 3D 模型(点云或网格)。该软件分析照片中的视觉特征,首先估计与每张图像相关联的相机的位置。通过比较图像并识别共同的点和特征,摄影测量软件可以重建物体的 3D 表示(在我们的例子中是受试者的头部)。通过检查生成的 3D 点云或网格,可以确定光极相对于受试者颅骨标志的位置。然而,这个过程在计算上是昂贵的并且耗时的,因此它通常在实验之后进行,并且通常需要使用标准计算资源花费数小时。如果生成的 3D 模型不足以捕获所有光极的所有位置信息,则无法回忆起这些信息,因为对受试者的实验早已结束。除了上面概述的挑战之外,如果受试者是婴儿,由于他们几乎不断运动,EM 跟踪和传统摄影测量方法通常都不切实际。鉴于头部实际上是一个刚性物体,理论上婴儿受试者的运动不应妨碍有效的摄影测量。然而,在婴儿移动的情况下,传统的摄影测量方法面临着重大挑战。次优的照明条件,例如不均匀的照明或投射在婴儿脸上的阴影,会影响所获取图像的质量和清晰度。此外,当受试者处于运动状态时,有必要在生成的 2D 图像中遮蔽背景以隔离婴儿的头部。这些因素共同使得单相机摄影测量法在捕捉运动婴儿的准确可靠的 3D 头部模型方面面临极大挑战。最近,一种使用智能手机的结构照明深度相机获取拍摄对象 3D 头部模型的方法被实现用于空间配准。11结构照明深度相机的工作原理是将特定的光图案投射到视野中,并分析这些图案如何因被拍摄物体的形状而变形。深度相机可以使用这些信息来计算物体表面上每个点与相机的距离,从而生成物体的精确 3D 表示。与用于 fNIRS 配准的摄影测量法相比,结构化照明提供的直接获取的 3D 深度信息省去了将 2D 图像转换为 3D 模型所需的时间,从而允许用户在实验期间调整扫描过程,以确保模型覆盖扫描中的所有光极位置并具有足够的质量。此外,通过直接获取量化的深度信息,结构化照明方法可能比传统摄影测量法更准确、更可靠。虽然这种直接 3D 扫描方法不需要拍摄对象严格保持静止,但过度移动会影响扫描图像的质量。一次采集即可获取运动婴儿头部的完整 3D 模型通常是不可能的。因此,当将智能手机 3D 扫描方法应用于婴儿时,用户仍然需要从不同角度拍摄多张快照以生成部分 3D 表面,然后将它们拼接在一起形成完整的全头 3D 模型。虽然所需快照的数量远低于精确摄影测量所需的二维图像的数量,但这仍然会导致更长的采集时间、降低精度并无法获得即时结果。
智能复合材料 (SC) 用于执行器和能量收集器等机电系统。通常,薄壁部件(例如梁、板和壳)被用作结构元件,以实现这些复合材料所需的机械行为。SC 表现出各种高级特性,从压电和压磁等低阶现象到挠电和挠磁等高阶效应。最近在智能复合材料中发现的挠磁现象是在有限条件下进行研究的。对现有文献的回顾表明,当存在挠磁效应 (FM) 时,缺乏对 SC 的三维 (3D) 弹性分析的评估。为了解决这个问题,控制方程将包含项 ∂ / ∂ z ,其中 z 表示厚度坐标。变分技术将指导我们进一步开发这些控制方程。我们将利用各种假设和理论,如3D梁模型、von K'arm'an应变非线性、Hamilton原理以及成熟的正、逆FM模型,推导出厚复合梁的本构方程。进行3D分析意味着应变和应变梯度张量必须以3D形式表示。加入项∂/∂z需要构建不同的模型。值得注意的是,目前的商用有限元代码无法准确、充分地处理微米和纳米级固体,因此使用这些程序来模拟挠磁复合结构是不切实际的。因此,我们将推导出的特征线性三维弯曲方程转换为3D半解析多项式域以获得数值结果。这项研究证明了进行三维力学分析对于探索智能结构中多种物理现象的耦合效应的重要性。