[13] 燕超月 , 孙盛芝 , 刘小峰 , 等 .飞秒激光减材法制备透明材料 内部三维微纳连通结构研究进展 [J].激光与光电子学进展 , 2023, 60(21): 2100001.Yan C Y, Sun S Z, Liu X F, et al.Research progress on preparation of three - dimensional micro - nano connected structures in transparent materials by femtosecond laser material reduction method[J].Laser & Optoelectronics Progress, 2023, 60(21): 2100001.
摘要:本研究介绍了一种基于卷积神经网络的高效深度学习模型,该模型结合了联合自编码器和对抗结构,用于从二维地表观测数据进行三维地下测绘。该方法被用于描绘澳大利亚沙漠景观中的古河谷。该神经网络在 6400 平方公里的区域内进行训练,使用地表地形作为二维输入,使用航空电磁 (AEM) 得出的古河谷存在概率图作为三维输出。训练后的神经网络在 99% 的训练域内平方误差 < 0. 10,在 93% 的验证域内平方误差 < 0. 10,表明它在重建训练区域以外的三维古河谷模式方面是可靠的。本研究设计的神经网络结构和训练算法由于其通用结构,具有广泛的应用潜力,可以从二维地表观测数据构建三维地质特征(如矿体、含水层)。
构建社区构建社区对于任何一起工作的团体都很重要,特别是如果参与者以前没有一起工作过。这个概念与营造安全、尊重、高效的课堂氛围相同。将社区建设纳入每节课可以建立信任,向参与者表明他们作为个体是有价值的,并让他们参与学习过程。它还有助于创建一个专业的学习网络,让参与者在工作中得到支持。社区建设可以简单到让参与者介绍自己和他们在学校/学区中的角色、制定或完善团体规范、允许提问和/或分享对模块课程中包含的个人反思或新学习的答案。分配给社区建设的时间将让参与者有机会发言并作为积极的贡献者和学习者参与课程。注意:此资源已从 ACESSE 资源 E 修改而来,通过 OER(开放教育资源)共享平台提供,并通过知识共享许可证(CC BY-SA)提供。推进连贯和公平的科学教育体系 (ACESSE,或“access”) 项目汇集了教育研究和实践领域的合作伙伴,以解决教育领域的一个紧迫问题:如何使州科学教育体系更加公平和连贯。该项目基于科罗拉多大学博尔德分校、华盛顿大学和州科学监督委员会 (CSSS) 之间的深度合作。该项目由美国国家科学基金会 (NSF) 通过奖项 DRL-156 1300 资助。
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图形表示是解决自然科学中复杂问题的强大概念,因为连接模式可以产生大量的突发现象。基于图形的方法已被证明在高度分支量子网络中的量子通信和量子搜索算法中特别有效。在这里,我们引入了一个以前未被发现的范例,通过利用具有定制双折射的复杂波导电路中光子对的空间和偏振自由度的混合作用,直接实验实现与三维网络相关的激发动力学。这个用于在复杂、高度连通的图形上进行多粒子量子行走的实验探索的试验台为开发费米子动力学在集成量子光子学中的应用潜力铺平了道路。
随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化
添加过渡元素(如 Cu、Fe 和 Ni)的铸造近共晶 Al-Si 合金是航空航天和汽车工业中常用的材料。[1,2] 此类合金的微观结构特点是共晶和初生 Si 以及嵌入 Al 基体中的多种富 Ni、Fe 和 Cu 铝化物形成的 3D 互连网络。[3 – 7] 在高温下(最高达约 300 – 350 ℃)长时间使用后,铝基体会过时,从而降低其强度和蠕变性能。为了提高这些 Al-Si 合金的强度和抗蠕变性能,可以使用额外的陶瓷增强材料,如短纤维和颗粒。[8 – 10] 研究表明,此类复合材料的微观机械行为在很大程度上取决于纤维的取向、颗粒的空间分布、
图 1. 阳极氧化过程示意图和所生产样品的图像。 (a) 两步 (红色) 163 和单步 (绿色) 阳极氧化方法的比较示意图。在单步中,脉冲阳极氧化方案直接应用于短暂恒电位方案之前 164。 (b) 用于制造 3D AAO 165 模板的脉冲电位分布示例。 (c) 由高纯度 Al (99.999%) 制备的 3D AAO。 (d) 由低纯度 Al (99.5%) 制备的 3D AAO。 166 (e) 由 99.5% Al 制备的 3D AAO,呈现氧化物分解 (暗灰色和浅灰色区域)。 (f)经过后处理化学蚀刻后的 3D AAO,由 99.999% 和 99.5% Al 制成,三个不同的 t 周期为:180、240 和 360 秒。还显示了每个样品的样品 168 蚀刻时间。 169
用复杂的多羽状肌纤维结构构建 3D 骨骼肌组织 Maria A. Stang, 1,2 Andrew Lee, 2 Jacqueline M. Bliley, 2 Brian D. Coffin, 1 Saigopalakrishna S. Yerneni, 2 Phil G. Campbell, 2 Adam W. Feinberg 1,2* 1 美国宾夕法尼亚州匹兹堡卡内基梅隆大学材料科学与工程系 15213 2 美国宾夕法尼亚州匹兹堡卡内基梅隆大学生物医学工程系 15213 *电子邮箱:feinberg@andrew.cmu.edu 关键词:3D 生物打印、骨骼肌、组织工程、FRESH、胶原蛋白